ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Segmentation of Action Segments in Egocentric Videos using Gaze

126   0   0.0 ( 0 )
 نشر من قبل Irwandi Hipiny
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Unsupervised segmentation of action segments in egocentric videos is a desirable feature in tasks such as activity recognition and content-based video retrieval. Reducing the search space into a finite set of action segments facilitates a faster and less noisy matching. However, there exist a substantial gap in machine understanding of natural temporal cuts during a continuous human activity. This work reports on a novel gaze-based approach for segmenting action segments in videos captured using an egocentric camera. Gaze is used to locate the region-of-interest inside a frame. By tracking two simple motion-based parameters inside successive regions-of-interest, we discover a finite set of temporal cuts. We present several results using combinations (of the two parameters) on a dataset, i.e., BRISGAZE-ACTIONS. The dataset contains egocentric videos depicting several daily-living activities. The quality of the temporal cuts is further improved by implementing two entropy measures.



قيم البحث

اقرأ أيضاً

In this paper we address the problem of automatically discovering atomic actions in unsupervised manner from instructional videos, which are rarely annotated with atomic actions. We present an unsupervised approach to learn atomic actions of structur ed human tasks from a variety of instructional videos based on a sequential stochastic autoregressive model for temporal segmentation of videos. This learns to represent and discover the sequential relationship between different atomic actions of the task, and which provides automatic and unsupervised self-labeling.
This paper digs deeper into factors that influence egocentric gaze. Instead of training deep models for this purpose in a blind manner, we propose to inspect factors that contribute to gaze guidance during daily tasks. Bottom-up saliency and optical flow are assessed versus strong spatial prior baselines. Task-specific cues such as vanishing point, manipulation point, and hand regions are analyzed as representatives of top-down information. We also look into the contribution of these factors by investigating a simple recurrent neural model for ego-centric gaze prediction. First, deep features are extracted for all input video frames. Then, a gated recurrent unit is employed to integrate information over time and to predict the next fixation. We also propose an integrated model that combines the recurrent model with several top-down and bottom-up cues. Extensive experiments over multiple datasets reveal that (1) spatial biases are strong in egocentric videos, (2) bottom-up saliency models perform poorly in predicting gaze and underperform spatial biases, (3) deep features perform better compared to traditional features, (4) as opposed to hand regions, the manipulation point is a strong influential cue for gaze prediction, (5) combining the proposed recurrent model with bottom-up cues, vanishing points and, in particular, manipulation point results in the best gaze prediction accuracy over egocentric videos, (6) the knowledge transfer works best for cases where the tasks or sequences are similar, and (7) task and activity recognition can benefit from gaze prediction. Our findings suggest that (1) there should be more emphasis on hand-object interaction and (2) the egocentric vision community should consider larger datasets including diverse stimuli and more subjects.
67 - Jun Li , Sinisa Todorovic 2021
This paper addresses unsupervised action segmentation. Prior work captures the frame-level temporal structure of videos by a feature embedding that encodes time locations of frames in the video. We advance prior work with a new self-supervised learni ng (SSL) of a feature embedding that accounts for both frame- and action-level structure of videos. Our SSL trains an RNN to recognize positive and negative action sequences, and the RNNs hidden layer is taken as our new action-level feature embedding. The positive and negative sequences consist of action segments sampled from videos, where in the former the sampled action segments respect their time ordering in the video, and in the latter they are shuffled. As supervision of actions is not available and our SSL requires access to action segments, we specify an HMM that explicitly models action lengths, and infer a MAP action segmentation with the Viterbi algorithm. The resulting action segmentation is used as pseudo-ground truth for estimating our action-level feature embedding and updating the HMM. We alternate the above steps within the Generalized EM framework, which ensures convergence. Our evaluation on the Breakfast, YouTube Instructions, and 50Salads datasets gives superior results to those of the state of the art.
Action segmentation refers to inferring boundaries of semantically consistent visual concepts in videos and is an important requirement for many video understanding tasks. For this and other video understanding tasks, supervised approaches have achie ved encouraging performance but require a high volume of detailed frame-level annotations. We present a fully automatic and unsupervised approach for segmenting actions in a video that does not require any training. Our proposal is an effective temporally-weighted hierarchical clustering algorithm that can group semantically consistent frames of the video. Our main finding is that representing a video with a 1-nearest neighbor graph by taking into account the time progression is sufficient to form semantically and temporally consistent clusters of frames where each cluster may represent some action in the video. Additionally, we establish strong unsupervised baselines for action segmentation and show significant performance improvements over published unsupervised methods on five challenging action segmentation datasets. Our code is available at https://github.com/ssarfraz/FINCH-Clustering/tree/master/TW-FINCH
We propose an unsupervised segmentation framework for StyleGAN generated objects. We build on two main observations. First, the features generated by StyleGAN hold valuable information that can be utilized towards training segmentation networks. Seco nd, the foreground and background can often be treated to be largely independent and be composited in different ways. For our solution, we propose to augment the StyleGAN2 generator architecture with a segmentation branch and to split the generator into a foreground and background network. This enables us to generate soft segmentation masks for the foreground object in an unsupervised fashion. On multiple object classes, we report comparable results against state-of-the-art supervised segmentation networks, while against the best unsupervised segmentation approach we demonstrate a clear improvement, both in qualitative and quantitative metrics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا