ترغب بنشر مسار تعليمي؟ اضغط هنا

Gold-Patched Graphene Nanoribbons for High-Responsivity and Ultrafast Photodetection from Visible to Infrared Regimes

197   0   0.0 ( 0 )
 نشر من قبل Mona Jarrahi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene is a very attractive material for broadband photodetection in hyperspectral imaging and sensing systems. However, its potential use has been hindered by tradeoffs between the responsivity, bandwidth, and operation speed of existing graphene photodetectors. Here, we present engineered photoconductive nanostructures based on gold-patched graphene nanoribbons, which enable simultaneous broadband and ultrafast photodetection with high responsivity. These nanostructures merge the advantages of broadband optical absorption, ultrafast photocarrier transport, and carrier multiplication in graphene nanoribbons with the ultrafast transport of photocarriers to the gold patches before recombination. Through this approach, high-responsivity operation is achieved without the use of bandwidth- and speed-limiting quantum dots, defect states, or tunneling barriers. We demonstrate high-responsivity photodetection from the visible to the infrared regime (0.6 A/W at 0.8 {mu}m and 11.5 A/W at 20 {mu}m) with operation speeds exceeding 50 GHz. Our results demonstrate an improvement of the response times by more than seven orders of magnitude and an increase in bandwidths of one order of magnitude compared to those of higher-responsivity graphene photodetectors based on quantum dots and tunneling barriers.

قيم البحث

اقرأ أيضاً

Graphene nanoribbons (GNRs) physisorbed on a Au(111) surface can be picked up, lifted at one end, and made slide by means of the tip of an atomic-force microscope. The dynamical transition from smooth sliding to multiple stick-slip regimes, the pushi ng/pulling force asymmetry, the presence of pinning, and its origin are real frictional processes in a nutshell, in need of a theoretical description. To this purpose, we conduct classical simulations of frictional manipulations for GNRs up to 30 nm in length, one end of which is pushed or pulled horizontally while held at different heights above the Au surface. These simulations allow us to clarify theoretically the emergence of stick-slip originating from the short 1D edges rather than the 2D bulk, the role of adhesion, of lifting, and of graphene bending elasticity in determining the GNR sliding friction. The understanding obtained in this simple context is of additional value for more general cases.
Silicon photonics is being extended from the near-infrared (near-IR) window of 1.3-1.5 {mu}m for optical fiber communications to the mid-infrared (mid-IR) wavelength-band of 2 {mu}m or longer for satisfying the increasing demands in many applications . Mid-IR waveguide photodetectors on silicon have attracted intensive attention as one of the indispensable elements for various photonic systems. Previously high-performance waveguide photodetectors on silicon were realized for the near-IR window of 1.3-1.5 {mu}m by introducing another semiconductor material (e.g., Ge, and III-V compounds) in the active region. Unfortunately, these traditional semiconductor materials do not work well for the wavelength of ~2 {mu}m or longer because the light absorption becomes very weak. As an alternative, two-dimensional materials provide a new and promising option for enabling active photonic devices on silicon. Here black-phosphorus (BP) thin films with optimized medium thicknesses (~40 nm) are introduced as the active material for light absorption and silicon/BP hybrid ridge waveguide photodetectors are demonstrated with a high responsivity at a low bias voltage. And up to 4.0Gbps data transmission is achieved at 2{mu}m.
Integrated photodetectors are essential components of scalable photonics platforms for quantum and classical applications. However, most efforts in the development of such devices to date have been focused on infrared telecommunications wavelengths. Here, we report the first monolithically integrated avalanche photodetector (APD) for visible light. Our devices are based on a doped silicon rib waveguide with a novel end-fire input coupling to a silicon nitride waveguide. We demonstrate a high gain-bandwidth product of 216 $pm$ 12 GHz at 20 V reverse bias measured for 685 nm input light, with a low dark current of 0.12 $mu$A . This performance is very competitive when benchmarked against other integrated APDs operating in the infrared range. With CMOS-compatible fabrication and integrability with silicon nitride platforms, our devices are attractive for visible-light photonics applications in sensing and communications.
Graphene integrated photonics provides several advantages over conventional Si photonics. Single layer graphene (SLG) enables fast, broadband, and energy-efficient electro-optic modulators, optical switches and photodetectors (GPDs), and is compatibl e with any optical waveguide. The last major barrier to SLG-based optical receivers lies in the low responsivity - electrical output per optical input - of GPDs compared to conventional PDs. Here we overcome this shortfall by integrating a photo-thermoelectric GPD with a Si microring resonator. Under critical coupling, we achieve $>$90% light absorption in a $sim$6 $mu$m SLG channel along the Si waveguide. Exploiting the cavity-enhanced light-matter interaction, causing carriers in SLG to reach $sim$400 K for an input power of $sim$0.6 mW, we get a voltage responsivity $sim$90 V/W, demonstrating the feasibility of our approach. Our device is capable of detecting data rates up to 20 Gbit/s, with a receiver sensitivity enabling it to operate at a 10$^{-9}$ bit-error rate, on par with mature semiconductor technology. The natural generation of a voltage rather than a current, removes the need for transimpedance amplification, with a reduction of the energy-per-bit cost and foot-print, when compared to a traditional semiconductor-based receiver.
A robust and reproducible preparation of self-standing nanoporous gold leaves (NPGL) is presented, with optical characterization and plasmonic behaviour analysis. Nanoporous gold (NPG) layers are tipically prepared as thin films on a bulk substrate. Here we present an alternative approach consisting in the preparation of NPGL in the form of a self-standing film. This solution leads to a perfectly symmetric configuration where the metal is immersed in a homogeneous medium and in addition can support the propagation of symmetric and antisymmetric plasmonic modes. With respect to bulk gold, NPG shows metallic behaviour at higher wavelengths, suggesting possible plasmonic applications in the near / medium infrared range. In this work the plasmonic properties in the wide wavelength range from the ultraviolet up to the mid-infrared range have been investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا