ﻻ يوجد ملخص باللغة العربية
We analyze the performance of classical and quantum search algorithms from a thermodynamic perspective, focusing on resources such as time, energy, and memory size. We consider two examples that are relevant to post-quantum cryptography: Grovers search algorithm, and the quantum algorithm for collision-finding. Using Bennetts Brownian model of low-power reversible computation, we show classical algorithms that have the same asymptotic energy consumption as these quantum algorithms. Thus, the quantum advantage in query complexity does not imply a reduction in these thermodynamic resource costs. In addition, we present realistic estimates of the resource costs of quantum and classical search, for near-future computing technologies. We find that, if memory is cheap, classical exhaustive search can be surprisingly competitive with Grovers algorithm.
We present classical and quantum algorithms based on spectral methods for a problem in tensor principal component analysis. The quantum algorithm achieves a quartic speedup while using exponentially smaller space than the fastest classical spectral a
The recursion equation analysis of Grovers quantum search algorithm presented by Biham et al. [PRA 60, 2742 (1999)] is generalized. It is applied to the large class of Grovers type algorithms in which the Hadamard transform is replaced by any other u
Quantum computers can exploit a Hilbert space whose dimension increases exponentially with the number of qubits. In experiment, quantum supremacy has recently been achieved by the Google team by using a noisy intermediate-scale quantum (NISQ) device
We consider some classical and quantum approximate optimization algorithms with bounded depth. First, we define a class of local classical optimization algorithms and show that a single step version of these algorithms can achieve the same performanc
We give efficient quantum algorithms to estimate the partition function of (i) the six vertex model on a two-dimensional (2D) square lattice, (ii) the Ising model with magnetic fields on a planar graph, (iii) the Potts model on a quasi 2D square latt