ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Mechanics and Hidden Superconformal Symmetry

107   0   0.0 ( 0 )
 نشر من قبل Andrew K. Waldron
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solvability of the ubiquitous quantum harmonic oscillator relies on a spectrum generating osp(1|2) superconformal symmetry. We study the problem of constructing all quantum mechanical models with a hidden osp(1|2) symmetry on a given space of states. This problem stems from interacting higher spin models coupled to gravity. In one dimension, we show that the solution to this problem is the Plyushchay family of quantum mechanical models with hidden superconformal symmetry obtained by viewing the harmonic oscillator as a one dimensional Dirac system, so that Grassmann parity equals wavefunction parity. These models--both oscillator and particle-like--realize all possible unitary irreducible representations of osp(1|2).



قيم البحث

اقرأ أيضاً

We show that a non-relativistic particle in a combined field of a magnetic monopole and 1/r^2 potential reveals a hidden, partially free dynamics when the strength of the central potential and the charge-monopole coupling constant are mutually fitted to each other. In this case the system admits both a conserved Laplace-Runge-Lenz vector and a dynamical conformal symmetry. The supersymmetrically extended system corresponds then to a background of a self-dual or anti-self-dual dyon. It is described by a quadratically extended Lie superalgebra D(2,1;alpha) with alpha=1/2, in which the bosonic set of generators is enlarged by a generalized Laplace-Runge-Lenz vector and its dynamical integral counterpart related to Galilei symmetry, as well as by the chiral Z_2-grading operator. The odd part of the nonlinear superalgebra comprises a complete set of 24=2 x 3 x 4 fermionic generators. Here a usual duplication comes from the Z_2-grading structure, the second factor can be associated with a triad of scalar integrals --- the Hamiltonian, the generator of special conformal transformations and the squared total angular momentum vector, while the quadruplication is generated by a chiral spin vector integral which exits due to the (anti)-self-dual nature of the electromagnetic background.
Superconformal indices of 4d N=1 SYM theories with SU(N) and SP(2N) gauge groups are investigated for N_f=N and N_f=N+1 flavors, respectively. These indices vanish for generic values of the flavor fugacities. However, for a singular submanifold of fu gacities they behave like the Dirac delta functions and describe the chiral symmetry breaking phenomenon. Similar picture holds for partition functions of 3d supersymmetric field theories with the chiral symmetry breaking.
We investigate the asymptotic dynamics of topological anti-de Sitter supergravity in two dimensions. Starting from the formulation as a BF theory, it is shown that the AdS_2 boundary conditions imply that the asymptotic symmetries form a super-Viraso ro algebra. Using the central charge of this algebra in Cardys formula, we exactly reproduce the thermodynamical entropy of AdS_2 black holes. Furthermore, we show that the dynamics of the dilaton and its superpartner reduces to that of superconformal transformations that leave invariant one chiral component of the stress tensor supercurrent of a two-dimensional conformal field theory. This dynamics is governed by a supersymmetric extension of the de Alfaro-Fubini-Furlan model of conformal quantum mechanics. Finally, two-dimensional de Sitter gravity is also considered, and the dS_2 entropy is computed by counting CFT states.
Growth of Young diagrams, equipped with Plancherel measure, follows the automodel equation of Kerov. Using the technology of unitary matrix model we show that such growth process is exactly same as the growth of gap-less phase in Gross-Witten and Wad ia (GWW) model. The limit shape of asymptotic Young diagrams corresponds to GWW transition point. Our analysis also offers an alternate proof of limit shape theorem of Vershik-Kerov and Logan-Shepp. Using the connection between unitary matrix model and free Fermi droplet description, we map the Young diagrams in automodel class to different shapes of two dimensional phase space droplets. Quantising these droplets we further set up a correspondence between automodel diagrams and coherent states in the Hilbert space. Thus growth of Young diagrams are mapped to evolution of coherent states in the Hilbert space. Gaussian fluctuations of large $N$ Young diagrams are also mapped to quantum (large $N$) fluctuations of the coherent states.
We consider the self-adjoint extensions (SAE) of the symmetric supercharges and Hamiltonian for a model of SUSY Quantum Mechanics in $mathbb{R}^+$ with a singular superpotential. We show that only for two particular SAE, whose domains are scale invar iant, the algebra of N=2 SUSY is realized, one with manifest SUSY and the other with spontaneously broken SUSY. Otherwise, only the N=1 SUSY algebra is obtained, with spontaneously broken SUSY and non degenerate energy spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا