ﻻ يوجد ملخص باللغة العربية
Solvability of the ubiquitous quantum harmonic oscillator relies on a spectrum generating osp(1|2) superconformal symmetry. We study the problem of constructing all quantum mechanical models with a hidden osp(1|2) symmetry on a given space of states. This problem stems from interacting higher spin models coupled to gravity. In one dimension, we show that the solution to this problem is the Plyushchay family of quantum mechanical models with hidden superconformal symmetry obtained by viewing the harmonic oscillator as a one dimensional Dirac system, so that Grassmann parity equals wavefunction parity. These models--both oscillator and particle-like--realize all possible unitary irreducible representations of osp(1|2).
We show that a non-relativistic particle in a combined field of a magnetic monopole and 1/r^2 potential reveals a hidden, partially free dynamics when the strength of the central potential and the charge-monopole coupling constant are mutually fitted
Superconformal indices of 4d N=1 SYM theories with SU(N) and SP(2N) gauge groups are investigated for N_f=N and N_f=N+1 flavors, respectively. These indices vanish for generic values of the flavor fugacities. However, for a singular submanifold of fu
We investigate the asymptotic dynamics of topological anti-de Sitter supergravity in two dimensions. Starting from the formulation as a BF theory, it is shown that the AdS_2 boundary conditions imply that the asymptotic symmetries form a super-Viraso
Growth of Young diagrams, equipped with Plancherel measure, follows the automodel equation of Kerov. Using the technology of unitary matrix model we show that such growth process is exactly same as the growth of gap-less phase in Gross-Witten and Wad
We consider the self-adjoint extensions (SAE) of the symmetric supercharges and Hamiltonian for a model of SUSY Quantum Mechanics in $mathbb{R}^+$ with a singular superpotential. We show that only for two particular SAE, whose domains are scale invar