ترغب بنشر مسار تعليمي؟ اضغط هنا

From (e,ep) to Neutrino Scattering

52   0   0.0 ( 0 )
 نشر من قبل Carlotta Giusti
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Carlotta Giusti




اسأل ChatGPT حول البحث

Since a long time electron scattering has been envisaged as a powerful and preferential tool to investigate nuclear properties. In particular, the (e,ep) knockout reaction has provided a wealth of information on the single particle (s.p.) aspects of nuclear structure, on the validity and the limit of the independent particle shell model. The work done for electron scattering is extremely useful also for the analysis and the interpretation of neutrino oscillation experiments, where nuclei are used as neutrino detectors and it is crucial that nuclear effects in neutrino-nucleus interactions are well under control. In this contribution it is discussed if and how the work done for (e,ep) can be exploited for the analysis of neutrino-nucleus scattering data.

قيم البحث

اقرأ أيضاً

99 - J.E. Amaro 2003
Electron-induced one-nucleon knock-out observables are computed for moderate to high momentum transfer making use of semi-relativistic expressions for the one-body and two-body meson-exchange current matrix elements. Emphasis is placed on the semi-re lativistic form of the $Delta$-isobar exchange current and several prescriptions for the dynamical-equivalent form of the $Delta$-propagator are analyzed. To this end, the inclusive transverse response function, evaluated within the context of the semi-relativistic approach and using different prescriptions for the $Delta$-propagator, is compared with the fully relativistic calculation performed within the scheme of the relativistic Fermi gas model. It is found that the best approximation corresponds to using the traditional static $Delta$-propagator. These semi-relativistic approaches, which contain important aspects of relativity, are implemented in a distorted wave analysis of quasielastic $(e,ep)$ reactions. Final state interactions are incorporated through a phenomenological optical potential model and relativistic kinematics is assumed when calculating the energy of the ejected nucleon. The results indicate that meson exchange currents may modify substantially the $TL$ asymmetry for high missing momentum.
70 - S. Malace , M. Paolone , 2008
Polarization transfer in quasi-elastic nucleon knockout is sensitive to the properties of the nucleon in the nuclear medium, including possible modification of the nucleon form factor and/or spinor. In our recently completed experiment E03-104 at Jef ferson Lab we measured the proton recoil polarization in the 4He(e,ep)3H reaction at a Q^2 of 0.8 (GeV/c)^2 and 1.3 (GeV/c)^2 with unprecedented precision. These data complement earlier data between 0.4 and 2.6 (GeV/c)^2 from both Mainz and Jefferson Lab. The measured ratio of polarization-transfer coefficients differs from a fully relativistic calculation, favoring either the inclusion of a medium modification of the proton form factors predicted by a quark-meson coupling model or strong charge-exchange final-state interactions. The measured induced polarizations agree well with the fully relativistic calculation and indicate that these strong final-state interactions may not be applicable.
The possibility to extract relevant information on spectroscopic factors from (e,e$$p) reactions at high $Q^2$ is studied. Recent ${}^{16}$O(e,e$$p) data at $Q^2 = 0.8$ (GeV/$c)^2$ are compared to a theoretical approach which includes an eikonal desc ription of the final-state interaction of the proton, a microscopic nuclear matter calculation of the damping of this proton, and high-quality quasihole wave functions for $p$-shell nucleons in ${}^{16}{rm O}$. Good agreement with the $Q^2 = 0.8$ (GeV/$c)^2$ data is obtained when spectroscopic factors are employed which are identical to those required to describe earlier low $Q^2$ experiments.
Polarization transfer in quasi-elastic nucleon knockout is sensitive to the properties of the nucleon in the nuclear medium. In experiment E03-104 at Jefferson Lab we measured the proton recoil polarization in the 4He(e,ep)3H reaction at a Q^2 of 0.8 (GeV/c)^2 and 1.3 (GeV/c)^2 with unprecedented precision. The measured polarization-transfer coefficients transverse and longitudinal to the momentum-transfer direction are well described by a fully relativistic calculation when a density-dependent medium modification of the nucleon form factors is included in the model. Results of an alternative model show that the ratio of these observables is also well described through strong charge-exchange final-state interactions. The induced polarization in the (e,ep) reaction is sensitive to the final-state interactions and the data from E03-104 will further constrain these models.
The electron-target-asymmetries A_parallel and A_perpendicular with target spin parallel and perpendicular to the momentum transfer q were measured for both the two-- and three-body breakup of 3He in the 3He(e,ep)-reaction. Polarized electrons were s cattered off polarized 3He in the quasielastic regime in parallel kinematics with the scattered electron and the knocked-out proton detected using the Three-Spectrometer-Facility at MAMI. The results are compared to Faddeev calculations which take into account Final State Interactions as well as Meson Exchange Currents. The experiment confirms the prediction of a large effect of Final State Interactions in the asymmetry of the three-body breakup and of an almost negligible one for the two-body breakup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا