ﻻ يوجد ملخص باللغة العربية
We consider curvature depending variational models for image regularization, such as Eulers elastica. These models are known to provide strong priors for the continuity of edges and hence have important applications in shape-and image processing. We consider a lifted convex representation of these models in the roto-translation space: In this space, curvature depending variational energies are represented by means of a convex functional defined on divergence free vector fields. The line energies are then easily extended to any scalar function. It yields a natural generalization of the total variation to the roto-translation space. As our main result, we show that the proposed convex representation is tight for characteristic functions of smooth shapes. We also discuss cases where this representation fails. For numerical solution, we propose a staggered grid discretization based on an averaged Raviart-Thomas finite elements approximation. This discretization is consistent, up to minor details, with the underlying continuous model. The resulting non-smooth convex optimization problem is solved using a first-order primal-dual algorithm. We illustrate the results of our numerical algorithm on various problems from shape-and image processing.
We consider X-ray coherent scatter imaging, where the goal is to reconstruct momentum transfer profiles (spectral distributions) at each spatial location from multiplexed measurements of scatter. Each material is characterized by a unique momentum tr
In this paper, we propose an overlapping additive Schwarz method for total variation minimization based on a dual formulation. The $O(1/n)$-energy convergence of the proposed method is proven, where $n$ is the number of iterations. In addition, we in
This work considers the use of Total variation (TV) minimization in the recovery of a given gradient sparse vector from Gaussian linear measurements. It has been shown in recent studies that there exist a sharp phase transition behavior in TV minimiz
Data clustering is a fundamental problem with a wide range of applications. Standard methods, eg the $k$-means method, usually require solving a non-convex optimization problem. Recently, total variation based convex relaxation to the $k$-means model
Total Generalized Variation (TGV) has recently been proven certainly successful in image processing for preserving sharp features as well as smooth transition variations. However, none of the existing works aims at numerically calculating TGV over tr