ﻻ يوجد ملخص باللغة العربية
While RANSAC-based methods are robust to incorrect image correspondences (outliers), their hypothesis generators are not robust to correct image correspondences (inliers) with positional error (noise). This slows down their convergence because hypotheses drawn from a minimal set of noisy inliers can deviate significantly from the optimal model. This work addresses this problem by introducing ANSAC, a RANSAC-based estimator that accounts for noise by adaptively using more than the minimal number of correspondences required to generate a hypothesis. ANSAC estimates the inlier ratio (the fraction of correct correspondences) of several ranked subsets of candidate correspondences and generates hypotheses from them. Its hypothesis-generation mechanism prioritizes the use of subsets with high inlier ratio to generate high-quality hypotheses. ANSAC uses an early termination criterion that keeps track of the inlier ratio history and terminates when it has not changed significantly for a period of time. The experiments show that ANSAC finds good homography and fundamental matrix estimates in a few iterations, consistently outperforming state-of-the-art methods.
Random sample consensus (RANSAC) is a robust model-fitting algorithm. It is widely used in many fields including image-stitching and point cloud registration. In RANSAC, data is uniformly sampled for hypothesis generation. However, this uniform sampl
Maximum consensus (MC) robust fitting is a fundamental problem in low-level vision to process raw-data. Typically, it firstly finds a consensus set of inliers and then fits a model on the consensus set. This work proposes a new formulation to achieve
Both generative learning and discriminative learning have recently witnessed remarkable progress using Deep Neural Networks (DNNs). For structured input synthesis and structured output prediction problems (e.g., layout-to-image synthesis and image se
Self-supervised detection and segmentation of foreground objects aims for accuracy without annotated training data. However, existing approaches predominantly rely on restrictive assumptions on appearance and motion. For scenes with dynamic activitie
We present a meta-learning approach for adaptive text-to-speech (TTS) with few data. During training, we learn a multi-speaker model using a shared conditional WaveNet core and independent learned embeddings for each speaker. The aim of training is n