ترغب بنشر مسار تعليمي؟ اضغط هنا

Near L-Edge Single and Multiple Photoionization of Singly Charged Iron Ions

68   0   0.0 ( 0 )
 نشر من قبل Stefan Schippers
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Absolute cross sections for m-fold photoionization (m=1,...,6) of Fe+ by a single photon were measured employing the photon-ion merged-beams setup PIPE at the PETRA III synchrotron light source, operated by DESY in Hamburg, Germany. Photon energies were in the range 680-920 eV which covers the photoionization resonances associated with 2p and 2s excitation to higher atomic shells as well as the thresholds for 2p and 2s ionization. The corresponding resonance positions were measured with an uncertainty of +- 0.2 eV. The cross section for Fe+ photoabsorption is derived as the sum of the individually measured cross-sections for m-fold ionization. Calculations of the Fe+ absorption cross sections have been carried out using two different theoretical approaches, Hartree-Fock including relativistic extensions and fully relativistic Multi-Configuration Dirac Fock. Apart from overall energy shifts of up to about 3 eV, the theoretical cross sections are in good agreement with each other and with the experimental results. In addition, the complex deexcitation cascades after the creation of inner-shell holes in the Fe+ ion have been tracked on the atomic fine-structure level. The corresponding theoretical results for the product charge-state distributions are in much better agreement with the experimental data than previously published configuration-average results. The present experimental and theoretical results are valuable for opacity calculations and are expected to pave the way to a more accurate determination of the iron abundance in the interstellar medium.

قيم البحث

اقرأ أيضاً

Using the photon-ion merged-beams technique at a synchrotron light source, we have measured relative cross sections for single and up to five-fold photoionization of Fe$^{2+}$ ions in the energy range 690--920 eV. This range contains thresholds and r esonances associated with ionization and excitation of $2p$ and $2s$ electrons. Calculations were performed to simulate the total absorption spectra. The theoretical results show very good agreement with the experimental data, if overall energy shifts of up to 2.5 eV are applied to the calculated resonance positions and assumptions are made about the initial experimental population of the various levels of the Fe$^{2+}$([Ar]$3d^6$) ground configuration. Furthermore, we performed extensive calculations of the Auger cascades that result when an electron is removed from the $2p$ subshell of Fe$^{2+}$. These computations lead to a better agreement with the measured product-charge-state distributions as compared to earlier work. We conclude that the $L$-shell absorption features of low-charged iron ions are useful for identifying gas-phase iron in the interstellar medium and for discriminating against the various forms of condensed-phase iron bound to composite interstellar dust grains.
Relative cross sections for $m$-fold photoionization ($m=1,ldots,5$) of Fe$^{3+}$ by single photon absorption were measured employing the photon-ion merged-beams setup PIPE at the PETRA III synchrotron light source operated at DESY in Hamburg, German y. The photon energies used spanned the range of $680-950,mathrm{eV}$, covering both the photoexcitation resonances from the $2p$ and $2s$ shells as well as the direct ionization from both shells. Multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations were performed to simulate the total photoexcitation spectra. Good agreement was found with the experimental results. These computations helped to assign several strong resonance features to specific transitions. We also carried out Hartree-Fock calculations with relativistic extensions taking into account both photoexcitation and photoionization. Furthermore, we performed extensive MCDHF calculations of the Auger cascades that result when an electron is removed from the $2p$ and $2s$ shells of Fe$^{3+}$. Our theoretically predicted charge-state fractions are in good agreement with the experimental results, representing a substantial improvement over previous theoretical calculations. The main reason for the disagreement with the previous calculations is their lack of inclusion of slow Auger decays of several configurations that can only proceed when accompanied by de-excitation of two electrons. In such cases, this additional shake-down transition of a (sub-)valence electron is required to gain the necessary energy for the release of the Auger electron.
Single, double, and triple ionization of the C+ ion by a single photon have been investigated in the energy range 286 to 326 eV around the K-shell single-ionization threshold at an unprecedented level of detail. At energy resolutions as low as 12 meV , corresponding to a resolving power of 24000, natural linewidths of the most prominent resonances could be determined. From the measurement of absolute cross sections, oscillator strengths, Einstein coefficients, multi-electron Auger decay rates and other transition parameters of the main K-shell excitation and decay processes are derived. The cross sections are compared to results of previous theoretical calculations. Mixed levels of agreement are found despite the relatively simple atomic structure of the C+ ion with only 5 electrons. This paper is a follow-up of a previous Letter [Muller et al., Phys. Rev. Lett. 114, 013002 (2015)].
Absolute cross sections for the K-shell photoionization of C-like nitrogen ions were measured by employing the ion-photon merged-beam technique at the SOLEIL synchrotron radiation facility in Saint-Aubin, France. High-resolution spectroscopy with E/$ Delta$E $approx$ 7,000 was achieved with the photon energy from 388 to 430 eV scanned with a band pass of 300 meV, and the 399.4 to 402 eV range with 60 meV. Experimental results are compared with theoretical predictions made from the multi-configuration Dirac-Fock (MCDF) and R-matrix methods. The interplay between experiment and theory enabled the identification and characterization of the strong 1s $rightarrow$ 2p resonances observed in the spectra.
71 - Sultana N. Nahar 2018
The IRON Project, initiated in 1991, aims at two main objectives, i) study the characteristics of and calculate large-scale high accuracy data for atomic radiative and collisional processes, and ii) application in solving astrophysical problems. It f ocuses on the complex iron and iron-peak elements commonly observed in the spectra of astrophysical plasmas. The present report will illustrate the characteristics of the dominant atomic process of photoionization that have been established under the project and the preceding the Opacity Project and their importance in applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا