ﻻ يوجد ملخص باللغة العربية
A self-consistent scheme for the calculations of the interacting groundstate and the near bandgap optical spectra of mono- and multilayer transition-metal-dichalcogenide systems is presented. The approach combines a dielectric model for the Coulomb interaction potential in a multilayer environment, gap equations for the renormalized groundstate, and the Dirac-Wannier-equation to determine the excitonic properties. To account for the extension of the individual monolayers perpendicular to their basic plane, an effective thickness parameter in the Coulomb interaction potential is introduced. Numerical evaluations for the example of MoS$_2$ show that the resulting finite size effects lead to significant modifications in the optical spectra, reproducing the experimentally observed non hydrogenic features of the excitonic resonance series. Applying the theory for multi-layer configurations, a consistent description of the near bandgap optical properties is obtained all the way from monolayer to bulk. In addition to the well-known in-plane excitons, also interlayer excitons occur in multilayer systems suggesting a reinterpretation of experimental results obtained for bulk material.
The full geometrical symmetry groups (the line groups) of the monolayered, 2Hb and 3R polytypes of the inorganic MoS2 and WS2 micro- and nanotubes of arbitrary chirality are found. This is used to find the coordinates of the representative atoms suff
We control the thickness of GaSe on the level of individual layers and study the corresponding optical absorption via highly sensitive differential transmission measurements. Suppression of excitonic transitions is observed when the number of layers
The electronic properties of few-layer graphene grown on the carbon-face of silicon carbide (SiC) are found to be strongly dependent on the number of layers. The carrier mobility is larger in thicker graphene because substrate-related scattering is r
The long wavelength moire superlattices in twisted 2D structures have emerged as a highly tunable platform for strongly correlated electron physics. We study the moire bands in twisted transition metal dichalcogenide homobilayers, focusing on WSe$_2$
Fabricating van der Waals (vdW) bilayer heterostructures (BL-HS) by stacking the same or different two-dimensional (2D) layers, offers a unique physical system with rich electronic and optical properties. Twist-angle between component layers has emer