ﻻ يوجد ملخص باللغة العربية
Despite the ever-increasing use across different sectors, the lithium-ion batteries (LiBs) have continually seen serious concerns over their thermal vulnerability. The LiB operation is associated with the heat generation and buildup effect, which manifests itself more strongly, in the form of highly uneven thermal distribution, for a LiB pack consisting of multiple cells. If not well monitored and managed, the heating may accelerate aging and cause unwanted side reactions. In extreme cases, it will even cause fires and explosions, as evidenced by a series of well-publicized incidents in recent years. To address this threat, this paper, for the first time, seeks to reconstruct the three-dimensional temperature field of a LiB pack in real time. The major challenge lies in how to acquire a high-fidelity reconstruction with constrained computation time. In this study, a three-dimensional thermal model is established first for a LiB pack configured in series. Although spatially resolved, this model captures spatial thermal behavior with a combination of high integrity and low complexity. Given the model, the standard Kalman filter is then distributed to attain temperature field estimation at substantially reduced computational complexity. The arithmetic operation analysis and numerical simulation illustrate that the proposed distributed estimation achieves a comparable accuracy as the centralized approach but with much less computation. This work can potentially contribute to the safer operation of the LiB packs in various systems dependent on LiB-based energy storage, potentially widening the access of this technology to a broader range of engineering areas.
Solid state battery technology has recently garnered considerable interest from companies including Toyota, BMW, Dyson, and others. The primary driver behind the commercialization of solid state batteries (SSBs) is to enable the use of lithium metal
We study two thermo-electrochemical models for lithium-ion batteries. The first is based on volume averaging the electrode microstructure whereas the second is based on the pseudo-two-dimensional (P2D) approach which treats the electrode as a collect
Silicon is a promising candidate for negative electrodes due to its high theoretical specific capacity (~3579 mAh g-1) and low lithiation potential (~0.40 V vs Li). However, its practical applications in battery have been inhibited by the large volum
Online estimation of electromechanical oscillation parameters provides essential information to prevent system instability and blackout and helps to identify event categories and locations. We formulate the problem as a state space model and employ t
We present a porous electrode model for lithium-ion batteries using Butler--Volmer reaction kinetics. We model lithium concentration in both the solid and fluid phase along with solid and liquid electric potential. Through asymptotic reduction, we sh