ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical vs geometric anisotropy in relativistic heavy-ion collisions: which one prevails?

80   0   0.0 ( 0 )
 نشر من قبل Eugene Zabrodin
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the influence of geometric and dynamical anisotropies on the development of flow harmonics and, simultaneously, on the second- and third-order oscillations of femtoscopy radii. The analysis is done within the Monte Carlo event generator HYDJET++, which was extended to dynamical triangular deformations. It is shown that the merely geometric anisotropy provides the results which anticorrelate with the experimental observations of either $v_2$ (or $v_3$) or second-order (or third-order) oscillations of the femtoscopy radii. Decays of resonances significantly increase the emitting areas but do not change the phases of the radii oscillations. In contrast to the spatial deformations, the dynamical anisotropy alone provides the correct qualitative description of the flow and the femtoscopy observables simultaneously. However, one needs both types of the anisotropy to match quantitatively the experimental data.



قيم البحث

اقرأ أيضاً

High energy heavy-ion collisions in laboratory produce a form of matter that can test Quantum Chromodynamics (QCD), the theory of strong interactions, at high temperatures. One of the exciting possibilities is the existence of thermodynamically disti nct states of QCD, particularly a phase of de-confined quarks and gluons. An important step in establishing this new state of QCD is to demonstrate that the system has attained thermal equilibrium. We present a test of thermal equilibrium by checking that the mean hadron yields produced in the small impact parameter collisions as well as grand canonical fluctuations of conserved quantities give consistent temperature and baryon chemical potential for the last scattering surface. This consistency for moments up to third order of the net-baryon number, charge, and strangeness is a key step in the proof that the QCD matter produced in heavy-ion collision attains thermal equilibrium. It is a clear indication for the first time, using fluctuation observables, that a femto-scale system attains thermalization. The study also indicates that the relaxation time scales for the system are comparable to or smaller than the life time of the fireball.
Relativistic heavy-ion experiments have observed similar quenching effects for (prompt) $D$ mesons compared to charged hadrons for transverse momenta larger than 6-8~GeV, which remains a mystery since heavy quarks typically lose less energies in quar k-gluon plasma than light quarks and gluons. Recent measurements of the nuclear modification factors of $B$ mesons and $B$-decayed $D$ mesons by the CMS Collaboration provide a unique opportunity to study the flavor hierarchy of jet quenching. Using a linear Boltzmann transport model combined with hydrodynamics simulation, we study the energy loss and nuclear modification for heavy and light flavor jets in high-energy nuclear collisions. By consistently taking into account both quark and gluon contributions to light and heavy flavor hadron productions within a next-to-leading order perturbative QCD framework, we obtain, for the first time, a satisfactory description of the experimental data on the nuclear modification factors for charged hadrons, $D$ mesons, $B$ mesons and $B$-decayed $D$ mesons simultaneously over a wide range of transverse momenta (8-300~GeV). This presents a solid solution to the flavor puzzle of jet quenching and constitutes a significant step towards the precision study of jet-medium interaction. Our study predicts that at transverse momenta larger than 30-40~GeV, $B$ mesons also exhibit similar suppression effects to charged hadrons and $D$ mesons, which may be tested by future measurements.
We present the spatial distributions of electromagnetic fields ($bf E$ and $bf B$) and electromagnetic anomaly $ bf E cdot B$ in Au+Au collisions at the RHIC energy $sqrt{s}$=200 GeV based on a multi-phase transport model. A dipolar distribution of $ bf E cdot B$ is observed in non-central collisions. We find that the coupling of the $bf E cdot B$ dipole and magnetic field $bf B$ can induce an electric quadrupole moment which can further lead to the difference in elliptic flows between positive charged particles and negative charged particles through final interactions. The centrality dependence of the density of $bf E cdot B$ is similar to the trend of the slope parameter $r$ measured from the difference in elliptic flows between positive pions and negative pions by the STAR collaboration. Therefore, the novel mechanism for electric quadrupole moment generation can offer a new interpretation of the observed charge-dependent elliptic flow of pions, but without the formation of chiral magnetic wave.
$alpha$-clustering structure is a significant topic in light nuclei. A Bayesian convolutional neural network (BCNN) is applied to classify initial non-clustered and clustered configurations, namely Woods-Saxon distribution and three-$alpha$ triangula r (four-$alpha$ tetrahedral) structure for $^{12}$C ($^{16}$O), from heavy-ion collision events generated within a multi-phase transport (AMPT) model. Azimuthal angle and transverse momentum distributions of charged pions are taken as inputs to train the classifier. On multiple-event basis, the overall classification accuracy can reach $95%$ for $^{12}$C/$^{16}$O + $^{197}$Au events at $sqrt{S_{NN}} =$ 200 GeV. With proper constructions of samples, the predicted deviations on mixed samples with different proportions of both configurations could be within $5%$. In addition, setting a simple confidence threshold can further improve the predictions on the mixed dataset. Our results indicate promising and extensive possibilities of application of machine-learning-based techniques to real data and some other problems in physics of heavy-ion collisions.
We report predictions for the suppression and elliptic flow of the $Upsilon(1S)$, $Upsilon(2S)$, and $Upsilon(3S)$ as a function of centrality and transverse momentum in ultra-relativistic heavy-ion collisions. We obtain our predictions by numericall y solving a Lindblad equation for the evolution of the heavy-quarkonium reduced density matrix derived using potential nonrelativistic QCD and the formalism of open quantum systems. To numerically solve the Lindblad equation, we make use of a stochastic unraveling called the quantum trajectories algorithm. This unraveling allows us to solve the Lindblad evolution equation efficiently on large lattices with no angular momentum cutoff. The resulting evolution describes the full 3D quantum and non-abelian evolution of the reduced density matrix for bottomonium states. We expand upon our previous work by treating differential observables and elliptic flow; this is made possible by a newly implemented Monte-Carlo sampling of physical trajectories. Our final results are compared to experimental data collected in $sqrt{s_{NN}} = 5.02$ TeV Pb-Pb collisions by the ALICE, ATLAS, and CMS collaborations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا