ﻻ يوجد ملخص باللغة العربية
In the framework of the STREGA (STRucture and Evolution of the GAlaxy) survey, two fields around the globular cluster Pal 12 were observed with the aim of detecting the possible presence of streams and/or an extended halo. The adopted stellar tracers are the Main Sequence, Turn-off and Red Giant Branch stars. We discuss the lumi- nosity function and the star counts in the observed region covering about 2 tidal radii, confirming that Pal 12 appears to be embedded in the Sagittarius Stream. Adopting an original approach to separate cluster and field stars, we do not find any evidence of sig- nificant extra-tidal Pal 12 stellar populations. The presence of the Sagittarius stream seems to have mimicked a larger tidal radius in previous studies. Indeed, adopting a King model, a redetermination of this value gives r_T = 0.22 +- 0.1 deg.
We report the detection of a pair of degree-long tidal tails associated with the globular cluster Palomar 14, using images obtained at the CFHT. We reveal a power-law departure from a King profile at large distances to the cluster center. The density
Palomar 5 is one of the sparsest star clusters in the Galactic halo and is best-known for its spectacular tidal tails, spanning over 20 degrees across the sky. With N-body simulations we show that both distinguishing features can result from a stella
We present evidence for mass segregation in the outer-halo globular cluster Palomar 14, which is intuitively unexpected since its present-day two-body relaxation time significantly exceeds the Hubble time. Based on archival Hubble Space Telescope ima
Since the discovery of chemically peculiar stars in globular clusters in the last century, the study of multiple populations has become increasingly important, given that chemical inhomogeneity is found in almost all globular clusters. Despite variou
Using the Optimal Filter Technique applied to Sloan Digital Sky Survey photometry, we have found extended tails stretching about 1 degree (or several tens of half-light radii) from either side of the ultra-faint globular cluster Palomar 1. The tails