ترغب بنشر مسار تعليمي؟ اضغط هنا

Why rare-earth ferromagnets are so rare: insights from the p-wave Kondo model

80   0   0.0 ( 0 )
 نشر من قبل Onur Erten
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic exchange in Kondo lattice systems is of the Ruderman-Kittel-Kasuya-Yosida type, whose sign depends on the Fermi wave vector, $k_F$ . In the simplest setting, for small $k_F$ , the interaction is predominately ferromagnetic, whereas it turns more antiferromagnetic with growing $k_F$. It is remarkable that even though $k_F$ varies vastly among the rare-earth systems, an overwhelming majority of lanthanide magnets are in fact antiferromagnets. To address this puzzle, we investigate the effects of a p-wave form factor for the Kondo coupling pertinent to nearly all rare-earth intermetallics. We show that this leads to interference effects which for small kF are destructive, greatly reducing the size of the RKKY interaction in the cases where ferromagnetism would otherwise be strongest. By contrast, for large $k_F$, constructive interference can enhance antiferromagnetic exchange. Based on this, we propose a new route for designing ferromagnetic rare-earth magnets.



قيم البحث

اقرأ أيضاً

136 - F. Y. Wei 2013
In rare-earth doped single crystalline CaFe2As2, the mysterious small volume fraction which superconducts up to 49 K, much higher than the bulk Tc ~ 30s K, has prompted a long search for a hidden variable that could enhance the Tc by more than 30% in iron-based superconductors of the same structure. Here we report a chemical, structural, and magnetic study of CaFe2As2 systematically doped with La, Ce, Pr, and Nd. Coincident with the high Tc phase, we find extreme magnetic anisotropy, accompanied by an unexpected doping-independent Tc and equally unexpected superparamagnetic clusters associated with As vacancies. These observations lead us to conjecture that the tantalizing Tc enhancement may be associated with naturally occurring chemical interfaces and may thus provide a new paradigm in the search for superconductors with higher Tc.
518 - W. S. Lee , A. P. Sorini , M. Yi 2012
We performed resonant soft X-ray diffraction on known charge density wave (CDW) compounds, rare earth tri-tellurides. Near the $M_5$ (3d - 4f) absorption edge of rare earth ions, an intense diffraction peak is detected at a wavevector identical to th at of CDW state hosted on Te$_2$ planes, indicating a CDW-induced modulation on the rare earth ions. Surprisingly, the temperature dependence of the diffraction peak intensity demonstrates an exponential increase at low temperatures, vastly different than that of the CDW order parameter. Assuming 4f multiplet splitting due to the CDW states,we present a model to calculate X-ray absorption spectrum and resonant profile of the diffraction peak, agreeing well with experimental observations. Our results demonstrate a situation where the temperature dependence of resonant X-ray diffraction peak intensity is not directly related to the intrinsic behavior of the order parameter associated with the electronic order, but is dominated by the thermal occupancy of the valence states.
The electronic structure of the rare earth nitrides is studied systematically using the {it ab-initio} self-interaction corrected local-spin-density approximation (SIC-LSD). This approach allows both a localised description of the rare earth $f-$elec trons and an itinerant description of the valence electrons. Localising different numbers of $f$-electrons on the rare earth atom corresponds to different valencies, and the total energies can be compared, providing a first-principles description of valence. CeN is found to be tetravalent while the remaining rare earth nitrides are found to be trivalent. We show that these materials have a broad range of electronic properties including forming a new class of half-metallic magnets with high magnetic moments and are strong candidates for applications in spintronic and spin-filtering devices.
In rare-earth cage compounds, the guest 4f ion cannot be considered as fixed at the centre of its cage. As result of the electronic degeneracy of the 4f shell, single-ion or collective mechanisms can redistribute the ion inside the cage, which can be described in terms of multipolar components. These mechanisms and their influence are here discussed and illustrated in relation with the rare-earth hexaboride series. Warning: Following our oral presentation, this manuscript should have appeared in the Proceedings of SCES 2014 (SCES 2014, International Conference on Strongly Correlated Electron Systems, held 7 - 11 July 2014 in Grenoble). An infuriated referee decided otherwise stating, in substance, that ... it could corrupt the youth ... (the very few interested in this particular the subject). The casual reader is here free to appreciate how far this corruption goes...
We investigate the pressure dependence of the optical properties of CeTe$_3$, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pres sures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of $R$Te$_3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا