ﻻ يوجد ملخص باللغة العربية
We coherently manipulate spin correlations in a two-component atomic Fermi gas loaded into an optical lattice using spatially and time-resolved Ramsey spectroscopy combined with high-resolution textit{in situ} imaging. This novel technique allows us not only to imprint spin patterns but also to probe the static magnetic structure factor at arbitrary wave vector, in particular the staggered structure factor. From a measurement along the diagonal of the $1^mathrm{st}$ Brillouin zone of the optical lattice, we determine the magnetic correlation length and the individual spatial spin correlators. At half filling, the staggered magnetic structure factor serves as a sensitive thermometer for the spin temperature, which we employ to study the thermalization of spin and density degrees of freedom during a slow quench of the lattice depth.
The mechanism of fermionic pairing is the key to understanding various phenomena such as high-temperature superconductivity and the pseudogap phase in cuprate materials. We study the pair correlations in the attractive Hubbard model using ultracold f
Strong electron correlations lie at the origin of transformative phenomena such as colossal magneto-resistance and high-temperature superconductivity. Already near room temperature, doped copper oxide materials display remarkable features such as a p
Mott insulators are paradigms of strongly correlated physics, giving rise to phases of matter with novel and hard-to-explain properties. Extending the typical SU(2) symmetry of Mott insulators to SU($N$) is predicted to give exotic quantum magnetism
Exotic phases of matter can emerge from strong correlations in quantum many-body systems. Quantum gas microscopy affords the opportunity to study these correlations with unprecedented detail. Here we report site-resolved observations of antiferromagn
We obtain a phase diagram of the spin imbalanced Hubbard model on the Lieb lattice, which is known to feature a flat band in its single-particle spectrum. Using the BCS mean-field theory for multiband systems, we find a variety of superfluid phases w