ترغب بنشر مسار تعليمي؟ اضغط هنا

Proper motions in the VVV Survey: Results for more than 15 million stars across NGC 6544

80   0   0.0 ( 0 )
 نشر من قبل Rodrigo Contreras Ramos
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: In the last six years, the VVV survey mapped 562 sq. deg. across the bulge and southern disk of the Galaxy. However, a detailed study of these regions, which includes $sim 36$ globular clusters (GCs) and thousands of open clusters is by no means an easy challenge. High differential reddening and severe crowding along the line of sight makes highly hamper to reliably distinguish stars belonging to different populations and/or systems. Aims: The aim of this study is to separate stars that likely belong to the Galactic GC NGC 6544 from its surrounding field by means of proper motion (PM) techniques. Methods: This work was based upon a new astrometric reduction method optimized for images of the VVV survey. Results: Photometry over the six years baseline of the survey allowed us to obtain a mean precision of $sim0.51$ mas/yr, in each PM coordinate, for stars with Ks < 15 mag. In the area studied here, cluster stars separate very well from field stars, down to the main sequence turnoff and below, allowing us to derive for the first time the absolute PM of NGC 6544. Isochrone fitting on the clean and differential reddening corrected cluster color magnitude diagram yields an age of $sim$ 11-13 Gyr, and metallicity [Fe/H] = -1.5 dex, in agreement with previous studies restricted to the cluster core. We were able to derive the cluster orbit assuming an axisymmetric model of the Galaxy and conclude that NGC 6544 is likely a halo GC. We have not detected tidal tail signatures associated to the cluster, but a remarkable elongation in the galactic center direction has been found. The precision achieved in the PM determination also allows us to separate bulge stars from foreground disk stars, enabling the kinematical selection of bona fide bulge stars across the whole survey area. Our results show that VVV data is perfectly suitable for this kind of analysis.



قيم البحث

اقرأ أيضاً

The Vista Variables in the Via Lactea survey (VVV) is a near-IR ESO public survey devoted to study the Galactic bulge and southern inner disk covering 560 deg$^2$ on the sky. This multi-epoch and multi-wavelength survey has helped to discover the fir st brown dwarfs towards the Galactic center, one of the most crowded areas in the sky, and several low mass companions to known nearby stars. The multi-epoch information has allowed us to calculate precise parallaxes, and put some constraints on the long-term variability of these objects. We expect to discover above a hundred more brown dwarfs. The VVV survey makes a great synergy with the Gaia mission, as both will observe for a few years the same fields at different wavelengths, and as VVV is more sensitive to very red objects such as brown dwarfs, VVV might provide unique candidates to follow up eventual astrometric microlensing events thank to the exquisite astrometric precision of the Gaia mission.
[abridged] The severe crowding in the direction of the inner Milky Way suggests that the census of stars within a few tens of parsecs in that direction may not be complete. We search for new nearby objects companions of known high proper motion (HP M) stars located towards the densest regions of the Southern Milky Way where the background contamination presented a major problem to previous works. The common proper motion (PM) method was used--we inspected the area around 167 known HPM (>=200 mas/yr) stars: 67 in the disk and 100 in the bulge. Multi-epoch images were provided by 2MASS and the VISTA Variables in Via Lactea (VVV). The VVV is a new on-going ZYJHKs plus multi-epoch Ks survey of ~562 deg^2 of Milky Ways bulge and inner Southern disk. Seven new co-moving companions were discovered around known HPM stars; six known co-moving pairs were recovered; a pair of stars that was thought to be co-moving was found to have different proper motions; published HPMs of eight stars were not confirmed; last but not least, spectral types ranging from G8V to M5V were derived from new infrared spectroscopy for seventeen stars, members of the co-moving pairs. The seven newly discovered stars constitute ~4% of the nearby HPM star list but this is not a firm limit on the HPM star incompleteness because our starting point--the HPM list assembled from the literature--is incomplete itself, missing many nearby HPM M and L type objects, and it is contaminated with non-HPM stars. We have demonstrated, that the superior sub-arcsec spatial resolution, with respect to previous surveys, allows the VVV to examine further the binary nature nature of known HPM stars. The >=5 yr span of VVV will provide sufficient baseline for finding new HPM stars from VVV data alone.
278 - Jia-Cheng Liu , Yi Xie , Zi Zhu 2013
Accelerations of both the solar system barycenter (SSB) and stars in the Milky Way cause a systematic observational effect on the stellar proper motions, which was first studied in the early 1990s and developed by J. Kovalevsky (aberration in proper motions, 2003, A&A, 404, 743). This paper intends to extend that work and aims to estimate the magnitude and significance of the aberration in proper motions of stars, especially in the region near the Galactic center. We adopt two models for the Galactic rotation curve to evaluate the aberrational effect on the Galactic plane. Based on the theoretical developments, we show that the effect of aberration in proper motions depends on the galactocentric distance of stars; it is dominated by the acceleration of stars in the central region of the Galaxy. Within 200 pc from the Galactic center, the systematic proper motion can reach an amplitude larger than 1000 uas/yr by applying a flat rotation curve. With a more realistic rotation curve which is linearly rising in the core region of the Galaxy, the aberrational proper motions are limited up to about 150 uas/yr. Then we investigate the applicability of the theoretical expressions concerning the aberrational proper motions, especially for those stars with short period orbits. If the orbital period of stars is only a fraction of the light time from the star to the SSB, the expression proposed by Kovalevsky is not appropriate. With a more suitable formulation, we found that the aberration has no effect on the determination of the stellar orbits on the celestial sphere. The aberrational effect under consideration is small but not negligible with high-accurate astrometry in the future, particularly in constructing the Gaia celestial reference system realized by Galactic stars.
Relative proper motions and cluster membership probabilities have been derived for ~ 2500 stars in the field of the open star cluster NGC 3766. The cluster has been observed in $B$ and $V$ broadband filters at two epochs separated by ~ 6 years using a wide-field imager mounted on the [email protected] telescope. All CCD frames were reduced using the astrometric techniques described in Anderson et al. (2006). The proper motion r.m.s. error for stars brighter than $V$ ~ 15 mag is 2.0 mas/yr but it gradually increases up to ~4 mas/yr at $V$ ~20 mag. Using proper motion data, membership probabilities have been derived for the stars in the region of the cluster. They indicate that three Be and one Ap stars are member of the cluster. The reddening $E(B-V)=0.22pm0.05$ mag, a distance 2.5$pm$0.5 kpc and an age of ~ 20 Myr are derived using stars of $P_{mu}>70%$. Mass function slope $x=1.60pm0.10$ is derived for the cluster and cluster was found to be dynamically relaxed. Finally, we provide positions, calibrated $B$ and $V$ magnitudes, relative proper motions and membership probabilities for the stars in the field of NGC 3766. We have produced a catalog that is electronically available to the astronomical community.
We present a multi-epoch Hubble Space Telescope (HST) study of stellar proper motions (PMs) for four fields spanning 200 degrees along the Sagittarius (Sgr) stream: one trailing arm field, one field near the Sgr dwarf spheroidal tidal radius, and two leading arm fields. We determine absolute PMs of dozens of individual stars per field, using established techniques that use distant background galaxies as stationary reference frame. Stream stars are identified based on combined color-magnitude diagram and PM information. The results are broadly consistent with the few existing PM measurements for the Sgr galaxy and the trailing arm. However, our new results provide the highest PM accuracy for the stream to date, the first PM measurements for the leading arm, and the first PM measurements for individual stream stars; we also serendipitously determine the PM of the globular cluster NGC~6652. In the trailing-arm field, the individual PMs allow us to kinematically separate trailing-arm stars from leading-arm stars that are 360 degrees further ahead in their orbit. Also, in three of our fields we find indications that two distinct kinematical components may exist within the same arm and wrap of the stream. Qualitative comparison of the HST data to the predictions of the Law & Majewski and Penarrubia et al. N-body models show that the PM measurements closely follow the predicted trend with Sgr longitude. This provides a successful consistency check on the PM measurements, as well as on these N-body approaches (which were not tailored to fit any PM data).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا