ترغب بنشر مسار تعليمي؟ اضغط هنا

High-redshift AGN in the Chandra Deep Fields: the obscured fraction and space density of the sub-$L_*$ population

59   0   0.0 ( 0 )
 نشر من قبل Fabio Vito
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the population of high-redshift ($3leq z < 6$) AGN selected in the two deepest X-ray surveys, the 7 Ms textit{Chandra} Deep Field-South and 2 Ms textit{Chandra} Deep Field-North. Their outstanding sensitivity and spectral characterization of faint sources allow us to focus on the sub-$L_*$ regime (log$L_{mathrm{X}}lesssim44$), poorly sampled by previous works using shallower data, and the obscured population. Taking fully into account the individual photometric-redshift probability distribution functions, the final sample consists of $approx102$ X-ray selected AGN at $3leq z < 6$. The fraction of AGN obscured by column densities log$N_{mathrm{H}}>23$ is $sim0.6-0.8$, once incompleteness effects are taken into account, with no strong dependence on redshift or luminosity. We derived the high-redshift AGN number counts down to $F_{mathrm{0.5-2,keV}}=7times10^{-18},mathrm{erg,cm^{-2},s^{-1}}$, extending previous results to fainter fluxes, especially at $z>4$. We put the tightest constraints to date on the low-luminosity end of AGN luminosity function at high redshift. The space-density, in particular, declines at $z>3$ at all luminosities, with only a marginally steeper slope for low-luminosity AGN. By comparing the evolution of the AGN and galaxy densities, we suggest that such a decline at high luminosities is mainly driven by the underlying galaxy population, while at low luminosities there are hints of an intrinsic evolution of the parameters driving nuclear activity. Also, the black-hole accretion rate density and star-formation rate density, which are usually found to evolve similarly at $zlesssim3$, appear to diverge at higher redshifts.


قيم البحث

اقرأ أيضاً

We study the comoving space density of X-ray-selected luminous active galactic nuclei (AGNs) and the obscured AGN fraction at high redshifts ($3 < z < 5$) in the Subaru/{it XMM-Newton} Deep Survey (SXDS) field. From an X-ray source catalog with high completeness of optical identification thanks to deep optical images, we select a sample of 30 AGNs at $z > 3$ with intrinsic (de-absorbed and rest-frame 2--10 keV) luminosities of $L_{rm X} = 10^{44-45}$ erg s$^{-1}$ detected in the 0.5--2 keV band, consisting of 20 and 10 objects with spectroscopic and photometric redshifts, respectively. Utilizing the $1/V_{rm max}$ method, we confirm that the comoving space density of luminous AGNs decreases with redshift above $z > 3$. When combined with the {it Chandra}-COSMOS result of Civano et al. (2011), the density decline of AGNs with $L_{rm X} = 10^{44-45}$ erg s$^{-1}$ is well represented by a power law of $(1 + z)^{-6.2 pm 0.9}$. We also determine the fraction of X-ray obscured AGNs with $N_{rm H} > 10^{22}$ cm$^{-2}$ in the Compton-thin population to be 0.54$^{+0.17}_{-0.19}$, by carefully taking into account observational biases including the effects of photon statistics for each source. This result is consistent with an independent determination of the type-2 AGN fraction based on optical properties, for which the fraction is found to be 0.59$pm$0.09. Comparing our result with that obtained in the local Universe, we conclude that the obscured fraction of luminous AGNs increases significantly from $z=0$ to $z>3$ by a factor of 2.5$pm$1.1.
90 - F. Vito , C. Vignali (1 2012
We present results from a spectral analysis of a sample of high-redshift (z>3) X-ray selected AGN in the 4 Ms Chandra Deep Field South (CDF-S), the deepest X-ray survey to date. The sample is selected using the most recent spectroscopic and photometr ic information available in this field. It consists of 34 sources with median redshift z=3.7, 80 median net counts in the 0.5-7 keV band and median rest-frame absorption-corrected luminosity $L_{2-10 rmn{keV}}approx1.5times10^{44}rmn{erg} rmn{s^{-1}}$. Spectral analysis for the full sample is presented and the intrinsic column density distribution, corrected for observational biases using spectral simulations, is compared with the expectations of X-ray background (XRB) synthesis models. We find that $approx57$ per cent of the sources are highly obscured ($N_H>10^{23}rmn{cm^{-2}}$). Source number counts in the $0.5-2rmn{keV}$ band down to flux $F_{0.5-2 rmn{keV}}approx4times10^{-17}rmn{erg} rmn{s^{-1}cm^{-2}}$ are also presented. Our results are consistent with a decline of the AGN space density at z>3 and suggest that, at those redshifts, the AGN obscured fraction is in agreement with the expectations of XRB synthesis models.
Population synthesis models of actively accreting super-massive black holes (or active galactic nuclei -- AGN) predict a large fraction that must grow behind dense, obscuring screens of gas and dust. Deep X-ray surveys are thought to have provided th e most complete and unbiased samples of AGN, but there is strong observational evidence that a portion of the population of obscured AGN is being missed. In this paper we use a sample of AGN derived from the deepest X-ray survey to date, the Chandra 7Ms GOODS-South Survey, to investigate the nature of low flux X-ray sources. We make full use of the extensive multi-wavelength coverage of the GOODS-South field, and cross-match our objects with wavelengths from the Radio to the IR. We find the low X-ray flux AGN in our sample have X-ray luminosities that indicate low-luminosity AGN classification, while their radio, infrared and optical counterparts indicate moderate to powerful AGN classification. We find the predicted column densities is on average an order of magnitude higher than the calculated column densities via X-ray detections for X-ray faint sources. We interpret our results as evidence of obscured AGN disguising as low-luminosity AGN via their X-ray luminosities. When we compare the estimation of the obscured AGN space density with and without these objects, we find a difference of 40% in the lowest X-ray luminosity regime probed by our sample.
By using a large highly obscured ($N_{rm H} > 10^{23} rm cm^{-2}$) AGN sample (294 sources at $z sim 0-5$) selected from detailed X-ray spectral analyses in the deepest Chandra surveys, we explore distributions of these X-ray sources in various optic al/IR/X-ray color-color diagrams and their host-galaxy properties, aiming at characterizing the nuclear obscuration environment and the triggering mechanism of highly obscured AGNs. We find that the refined IRAC color-color diagram fails to identify the majority of X-ray selected highly obscured AGNs, even for the most luminous sources with ${rm log},L_{rm X}, rm (erg s^{-1}) > 44$. Over 80% of our sources will not be selected as heavily obscured candidates using the flux ratio of $f_{rm 24 mu m}, /,f_R > 1000$ and $R - K > 4.5$ criteria, implying complex origins and conditions for the obscuring materials that are responsible for the heavy X-ray obscuration. The average star formation rate of highly obscured AGNs is similar to that of stellar mass- ($M_*$-) and $z$-controlled normal galaxies, while the lack of quiescent hosts is observed for the former. Partial correlation analyses imply that highly obscured AGN activity (traced by $L_{rm X}$) appears to be more fundamentally related to $M_*$, and no dependence of $N_{rm H}$ on either $M_*$ or SFR is detected. Morphology analyses reveal that 61% of our sources have a significant disk component, while only 27% of them exhibit irregular morphological signatures. These findings together point toward a scenario where secular processes (e.g., galactic-disk instabilities), instead of mergers, are most probable to be the leading mechanism that triggers accretion activities of X-ray-selected highly obscured AGNs.
88 - Q. DAmato , R. Gilli , C. Vignali 2020
Obscured AGN represent a significant fraction of the entire AGN population, especially at high redshift (~70% at z=3--5). They are often characterized by the presence of large gas and dust reservoirs that are thought to sustain and possibly obscure v igorous star formation processes that make these objects shine at far-IR and sub-mm wavelengths. We exploit ALMA Cycle 4 observations of the continuum (~2.1mm) and high-J CO emission of a sample of six X-ray selected SMGs hosting an obscured AGN at z_spec>2.5 in the 7 Ms CDF-S. We measured the masses and sizes of the dust and molecular gas and we derived the gas density and column density on the basis of a uniform sphere geometry. Finally, we compared the measured column densities with those derived from the Chandra X-ray spectra. We detected both the continuum and line emission for three sources for which we measured both the flux density and size. For the undetected sources, we derived an upper limit on the flux density. We found that the detected galaxies are rich in gas and dust (molecular gas mass in the range <0.5 - 2.7 x 10^10 M_sun for {alpha}_CO=0.8 and up to ~2 x 10^11~M_sun for {alpha}_CO=6.5, and dust mass <0.9 - 4.9 x 10^8 M_sun) and compact (gas major axis 2.1-3.0 kpc, dust major axis 1.4-2.7 kpc). The column densities associated with the ISM are on the order of 10^(23-24) cm-2, which is comparable with those derived from the X-ray spectra. For the detected sources we also derived dynamical masses in the range 0.8 - 3.7 x 10^10 M_sun. We conclude that the ISM of high redshift galaxies can substantially contribute to nuclear obscuration up to the Compton-thick (>10^24 cm-2) regime. In addition, we found that all the detected sources show a velocity gradient reminding one rotating system, even though two of them show peculiar features in their morphology that can be associated with a chaotic, possibly merging, structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا