ﻻ يوجد ملخص باللغة العربية
The present study proposes a data-driven framework trained with high-fidelity simulation results to facilitate decision making for combustor designs. At its core is a surrogate model employing a machine-learning technique called kriging, which is combined with data-driven basis functions to extract and model the underlying coherent structures. This emulation framework encompasses key design parameter sensitivity analysis, physics-guided classification of design parameter sets, and flow evolution modeling for efficient design survey. To better inform the model of quantifiable physical knowledge, a sensitivity analysis using Sobol indices and a decision tree are incorporated into the framework. This information improves the surrogate model training process, which employs basis functions as regression functions over the design space for the kriging model. The novelty of the proposed approach is the construction of the model through Common Proper Orthogonal Decomposition, which allows for data-reduction and extraction of common coherent structures. The accuracy of prediction of mean flow features for new swirl injector designs is assessed and the dynamic flowfield is captured in the form of power spectrum densities. This data-driven framework also demonstrates the uncertainty quantification of predictions, providing a metric for model fit. The significantly reduced computation time required for evaluating new design points enables efficient survey of the design space.
An extension of Proper Orthogonal Decomposition is applied to the wall layer of a turbulent channel flow (Re {tau} = 590), so that empirical eigenfunctions are defined in both space and time. Due to the statistical symmetries of the flow, the igenfun
This interdisciplinary study, which combines machine learning, statistical methodologies, high-fidelity simulations, and flow physics, demonstrates a new process for building an efficient surrogate model for predicting spatiotemporally evolving flow
Applying security as a lifecycle practice is becoming increasingly important to combat targeted attacks in safety-critical systems. Among others there are two significant challenges in this area: (1) the need for models that can characterize a realis
The proper orthogonal decomposition (POD) is a powerful classical tool in fluid mechanics used, for instance, for model reduction and extraction of coherent flow features. However, its applicability to high-resolution data, as produced by three-dimen
Data-driven design of mechanical metamaterials is an increasingly popular method to combat costly physical simulations and immense, often intractable, geometrical design spaces. Using a precomputed dataset of unit cells, a multiscale structure can be