ﻻ يوجد ملخص باللغة العربية
Compressed bitmap indexes are used in systems such as Git or Oracle to accelerate queries. They represent sets and often support operations such as unions, intersections, differences, and symmetric differences. Several important systems such as Elasticsearch, Apache Spark, Netflixs Atlas, LinkedIns Pinot, Metamarkets Druid, Pilosa, Apache Hive, Apache Tez, Microsoft Visual Studio Team Services and Apache Kylin rely on a specific type of compressed bitmap index called Roaring. We present an optimized software library written in C implementing Roaring bitmaps: CRoaring. It benefits from several algorithms designed for the single-instruction-multiple-data (SIMD) instructions available on commodity processors. In particular, we present vectorized algorithms to compute the intersection, union, difference and symmetric difference between arrays. We benchmark the library against a wide range of competitive alternatives, identifying weaknesses and strengths in our software. Our work is available under a liberal open-source license.
Bitmap indexes are commonly used in databases and search engines. By exploiting bit-level parallelism, they can significantly accelerate queries. However, they can use much memory, and thus we might prefer compressed bitmap indexes. Following Oracles
Compressed bitmap indexes are used in databases and search engines. Many bitmap compression techniques have been proposed, almost all relying primarily on run-length encoding (RLE). However, on unsorted data, we can get superior performance with a hy
This paper presents the image-quality-guided strategy for optimization of bicubic interpolation and interpolated scan conversion algorithms. This strategy uses feature selection through line chart data visualization technique and first index of the m
Bitmap indexes are routinely used to speed up simple aggregate queries in databases. Set operations such as intersections, unions and complements can be represented as logical operations (AND, OR, NOT). However, less is known about the application of
As the successor of H.265/HEVC, the new versatile video coding standard (H.266/VVC) can provide up to 50% bitrate saving with the same subjective quality, at the cost of increased decoding complexity. To accelerate the application of the new coding s