ترغب بنشر مسار تعليمي؟ اضغط هنا

Decision making and uncertainty quantification for individualized treatments

62   0   0.0 ( 0 )
 نشر من قبل Rodney Sparapani
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Individualized treatment rules (ITR) can improve health outcomes by recognizing that patients may respond differently to treatment and assigning therapy with the most desirable predicted outcome for each individual. Flexible and efficient prediction models are desired as a basis for such ITRs to handle potentially complex interactions between patient factors and treatment. Modern Bayesian semiparametric and nonparametric regression models provide an attractive avenue in this regard as these allow natural posterior uncertainty quantification of patient specific treatment decisions as well as the population wide value of the prediction-based ITR. In addition, via the use of such models, inference is also available for the value of the Optimal ITR. We propose such an approach and implement it using Bayesian Additive Regression Trees (BART) as this model has been shown to perform well in fitting nonparametric regression functions to continuous and binary responses, even with many covariates. It is also computationally efficient for use in practice. With BART we investigate a treatment strategy which utilizes individualized predictions of patient outcomes from BART models. Posterior distributions of patient outcomes under each treatment are used to assign the treatment that maximizes the expected posterior utility. We also describe how to approximate such a treatment policy with a clinically interpretable ITR, and quantify its expected outcome. The proposed method performs very well in extensive simulation studies in comparison with several existing methods. We illustrate the usage of the proposed method to identify an individualized choice of conditioning regimen for patients undergoing hematopoietic cell transplantation and quantify the value of this method of choice in relation to the Optimal ITR as well as non-individualized treatment strategies.



قيم البحث

اقرأ أيضاً

Precision medicine is an emerging scientific topic for disease treatment and prevention that takes into account individual patient characteristics. It is an important direction for clinical research, and many statistical methods have been recently pr oposed. One of the primary goals of precision medicine is to obtain an optimal individual treatment rule (ITR), which can help make decisions on treatment selection according to each patients specific characteristics. Recently, outcome weighted learning (OWL) has been proposed to estimate such an optimal ITR in a binary treatment setting by maximizing the expected clinical outcome. However, for ordinal treatment settings, such as individualized dose finding, it is unclear how to use OWL. In this paper, we propose a new technique for estimating ITR with ordinal treatments. In particular, we propose a data duplication technique with a piecewise convex loss function. We establish Fisher consistency for the resulting estimated ITR under certain conditions, and obtain the convergence and risk bound properties. Simulated examples and two applications to datasets from an irritable bowel problem and a type 2 diabetes mellitus observational study demonstrate the highly competitive performance of the proposed method compared to existing alternatives.
With the emergence of precision medicine, estimating optimal individualized decision rules (IDRs) has attracted tremendous attention in many scientific areas. Most existing literature has focused on finding optimal IDRs that can maximize the expected outcome for each individual. Motivated by complex individualized decision making procedures and popular conditional value at risk (CVaR) measures, we propose a new robust criterion to estimate optimal IDRs in order to control the average lower tail of the subjects outcomes. In addition to improving the individualized expected outcome, our proposed criterion takes risks into consideration, and thus the resulting IDRs can prevent adverse events. The optimal IDR under our criterion can be interpreted as the decision rule that maximizes the ``worst-case scenario of the individualized outcome when the underlying distribution is perturbed within a constrained set. An efficient non-convex optimization algorithm is proposed with convergence guarantees. We investigate theoretical properties for our estimated optimal IDRs under the proposed criterion such as consistency and finite sample error bounds. Simulation studies and a real data application are used to further demonstrate the robust performance of our method.
We study the design of autonomous agents that are capable of deceiving outside observers about their intentions while carrying out tasks in stochastic, complex environments. By modeling the agents behavior as a Markov decision process, we consider a setting where the agent aims to reach one of multiple potential goals while deceiving outside observers about its true goal. We propose a novel approach to model observer predictions based on the principle of maximum entropy and to efficiently generate deceptive strategies via linear programming. The proposed approach enables the agent to exhibit a variety of tunable deceptive behaviors while ensuring the satisfaction of probabilistic constraints on the behavior. We evaluate the performance of the proposed approach via comparative user studies and present a case study on the streets of Manhattan, New York, using real travel time distributions.
Robots frequently face complex tasks that require more than one action, where sequential decision-making (SDM) capabilities become necessary. The key contribution of this work is a robot SDM framework, called LCORPP, that supports the simultaneous ca pabilities of supervised learning for passive state estimation, automated reasoning with declarative human knowledge, and planning under uncertainty toward achieving long-term goals. In particular, we use a hybrid reasoning paradigm to refine the state estimator, and provide informative priors for the probabilistic planner. In experiments, a mobile robot is tasked with estimating human intentions using their motion trajectories, declarative contextual knowledge, and human-robot interaction (dialog-based and motion-based). Results suggest that, in efficiency and accuracy, our framework performs better than its no-learning and no-reasoning counterparts in office environment.
We consider the problem of uncertainty quantification for an unknown low-rank matrix $mathbf{X}$, given a partial and noisy observation of its entries. This quantification of uncertainty is essential for many real-world problems, including image proc essing, satellite imaging, and seismology, providing a principled framework for validating scientific conclusions and guiding decision-making. However, existing literature has largely focused on the completion (i.e., point estimation) of the matrix $mathbf{X}$, with little work on investigating its uncertainty. To this end, we propose in this work a new Bayesian modeling framework, called BayeSMG, which parametrizes the unknown $mathbf{X}$ via its underlying row and column subspaces. This Bayesian subspace parametrization allows for efficient posterior inference on matrix subspaces, which represents interpretable phenomena in many applications. This can then be leveraged for improved matrix recovery. We demonstrate the effectiveness of BayeSMG over existing Bayesian matrix recovery methods in numerical experiments and a seismic sensor network application.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا