ﻻ يوجد ملخص باللغة العربية
Individualized treatment rules (ITR) can improve health outcomes by recognizing that patients may respond differently to treatment and assigning therapy with the most desirable predicted outcome for each individual. Flexible and efficient prediction models are desired as a basis for such ITRs to handle potentially complex interactions between patient factors and treatment. Modern Bayesian semiparametric and nonparametric regression models provide an attractive avenue in this regard as these allow natural posterior uncertainty quantification of patient specific treatment decisions as well as the population wide value of the prediction-based ITR. In addition, via the use of such models, inference is also available for the value of the Optimal ITR. We propose such an approach and implement it using Bayesian Additive Regression Trees (BART) as this model has been shown to perform well in fitting nonparametric regression functions to continuous and binary responses, even with many covariates. It is also computationally efficient for use in practice. With BART we investigate a treatment strategy which utilizes individualized predictions of patient outcomes from BART models. Posterior distributions of patient outcomes under each treatment are used to assign the treatment that maximizes the expected posterior utility. We also describe how to approximate such a treatment policy with a clinically interpretable ITR, and quantify its expected outcome. The proposed method performs very well in extensive simulation studies in comparison with several existing methods. We illustrate the usage of the proposed method to identify an individualized choice of conditioning regimen for patients undergoing hematopoietic cell transplantation and quantify the value of this method of choice in relation to the Optimal ITR as well as non-individualized treatment strategies.
Precision medicine is an emerging scientific topic for disease treatment and prevention that takes into account individual patient characteristics. It is an important direction for clinical research, and many statistical methods have been recently pr
With the emergence of precision medicine, estimating optimal individualized decision rules (IDRs) has attracted tremendous attention in many scientific areas. Most existing literature has focused on finding optimal IDRs that can maximize the expected
We study the design of autonomous agents that are capable of deceiving outside observers about their intentions while carrying out tasks in stochastic, complex environments. By modeling the agents behavior as a Markov decision process, we consider a
Robots frequently face complex tasks that require more than one action, where sequential decision-making (SDM) capabilities become necessary. The key contribution of this work is a robot SDM framework, called LCORPP, that supports the simultaneous ca
We consider the problem of uncertainty quantification for an unknown low-rank matrix $mathbf{X}$, given a partial and noisy observation of its entries. This quantification of uncertainty is essential for many real-world problems, including image proc