ﻻ يوجد ملخص باللغة العربية
The proposed ICAL detector at INO is a large sized underground magnetized iron detector. ICAL is designed to reconstruct muon momentum using magnetic spectrometers. Energy measurement using magnets fail for muons in TeV range, since the angular deflection of the muon in the magnetic field is negligible and the muon tracks become nearly straight. A new technique for measuring the energy of muons in the TeV range is used by the CCFR neutrino detector, known as the Pair-Meter technique. This technique estimates muon energy from measurements of the energy deposited by the muon in many layers of an iron-calorimeter through e$^+$ and e$^-$ pair production. In this work we have performed Geant4 based preliminary analysis for iron plates and have demonstrated the observational feasibility of very high energy muons (1TeV-1000TeV) in a large mass underground detector operating as a pair-meter. This wide range of energy spectrum will be helpful for studying the cosmic rays in the Knee region and an understanding of the atmospheric neutrino flux for the present and future ultra high-energy atmospheric neutrino experiments.
The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus
Cascades from high-energy particles produce a brief current and associated magnetic fields. Even sub-nanosecond duration magnetic fields can be detected with a relatively low bandwidth system by latching image currents on a capacitor. At accelerators
In this paper, we study events without identifiable muon tracks in the Iron Calorimeter detector at the India-based Neutrino Observatory. Such events are dominated by high energy (E$_ u>$1 GeV) $ u_e$ charged current interactions, which have been stu
The proposed India-based Neutrino Observatory will host a 50 kton magnetized iron calorimeter (ICAL) with resistive plate chambers as its active detector element. Its primary focus is to study charged-current interactions of atmospheric muon neutrino
Atmospheric neutrino experiments can determine the neutrino mass hierarchy for any value of $delta_{CP}$. The Iron Calorimeter (ICAL) detector at the India-based Neutrino Observatory can distinguish between the charged current interactions of $ u_mu$