ترغب بنشر مسار تعليمي؟ اضغط هنا

The radio structure of the peculiar narrow-line Seyfert 1 galaxy candidate J1100+4421

87   0   0.0 ( 0 )
 نشر من قبل Krisztina Eva Gabanyi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Narrow-line Seyfert 1 galaxies (NLS1) are an intriguing subclass of active galactic nuclei. Their observed properties indicate low central black hole mass and high accretion rate. The extremely radio-loud NLS1 sources often show relativistic beaming and are usually regarded as younger counterparts of blazars. Recently, the object SDSS J110006.07+442144.3 was reported as a candidate NLS1 source. The characteristics of its dramatic optical flare indicated its jet-related origin. The spectral energy distribution of the object was similar to that of the gamma-ray detected radio-loud NLS1, PMN J0948+0022. Our high-resolution European Very Long Baseline Interferometry Network observations at 1.7 and 5 GHz revealed a compact core feature with a brightness temperature of >~ 10^(10) K. Using the lowest brightness temperature value and assuming a moderate Lorentz factor of ~9 the jet viewing angle is <~ 26 deg. Archival Very Large Array data show a large-scale radio structure with a projected linear size of ~150 kpc reminiscent of double-sided morphology.



قيم البحث

اقرأ أيضاً

We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey (KISS). The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observati ons suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z=0.840, however with unusually strong narrow emission lines. The estimated black hole mass of ~ 10^7 Msun implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ~ 4 x 10^2 - 3 x 10^3, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and gamma-ray loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.
175 - Akihiro Doi 2014
Mrk 1388 has an unusual Seyfert nucleus that shows narrow emission-line components without broad ones, but shows a strong featureless continuum and strong iron-forbidden high-ionization emission lines. The apparent coexistence of type-1/2 characteris tics is potentially attributed to a heavily obscured broad-line region or to an intermediate-mass black hole with a broad-line component intrinsically narrower than those of typical narrow-line Seyfert 1 (NLS1) galaxies. Our observation using very-long-baseline interferometry (VLBI) reveals high-brightness radio emission from nonthermal jets from an active galactic nucleus (AGN) with a significant radio luminosity. Furthermore, we investigate the radial profile of the host galaxy using a Hubble Space Telescope (HST) image, which shows a Sersic index suggestive of a pseudobulge. Using the VLBI and HST results, which are essentially not affected by dust extinction, three individual methods provide similar estimates for the black hole mass: (0.76--5.4)x10^6 M_sun, 1.5x10^6 M_sun, and 4.1x10^6 M_sun. These masses are in a range that is preferential for typical NLS1 galaxies rather than for intermediate-mass black holes. Based on the estimated masses, the full width at half maximum $FWHM(H_beta)$ of approximately 1200--1700 km/s should have been seen. The scenario of a heavily absorbed NLS1 nucleus can explain the peculiarities previously observed.
The supermassive black holes (SMBHs) of narrow-line Seyfert 1 galaxies (NLS1s) are at the lowest end of mass function of active galactic nuclei (AGNs) and preferentially reside in late-type host galaxies with pseudobulges, which are thought to be for med by internal secular evolution. On the other hand, the population of radio-loud NLS1s presents a challenge for the relativistic jet paradigm that powerful radio jets are exclusively associated with very high mass SMBHs in elliptical hosts, which are built-up through galaxy mergers. We investigated distorted radio structures associated with the nearest gamma-ray emitting, radio-loud NLS1 1H 0323+342. This provides supporting evidence for the merger hypothesis based on the past optical/near-infrared observations of its host galaxy. The anomalous radio morphology consists of two different structures, the inner curved structure of currently active jet and the outer linear structure of low-brightness relics. Such a coexistence might be indicative of the stage of an established black hole binary with precession before the black holes coalesce in the galaxy merger process. 1H 0323+342 and other radio-loud NLS1s under galaxy interactions may be extreme objects on the evolutionary path from radio-quiet NLS1s to normal Seyfert galaxies with larger SMBHs in classical bulges through mergers and merger-induced jet phases.
135 - J. L. Richards 2014
Several narrow-line Seyfert 1 galaxies (NLS1s) have now been detected in gamma rays, providing firm evidence that at least some of this class of active galactic nuclei (AGN) produce relativistic jets. The presence of jets in NLS1s is surprising, as t hese sources are typified by comparatively small black hole masses and near- or super-Eddington accretion rates. This challenges the current understanding of the conditions necessary for jet production. Comparing the properties of the jets in NLS1s with those in more familiar jetted systems is thus essential to improve jet production models. We present early results from our campaign to monitor the kinematics and polarization of the parsec-scale jets in a sample of 15 NLS1s through multifrequency observations with the Very Long Baseline Array. These observations are complemented by fast-cadence 15 GHz monitoring with the Owens Valley Radio Observatory 40m telescope and optical spectroscopic monitoring with with the 2m class telescope at the Guillermo Haro Astrophysics Observatory in Cananea, Mexico.
706 - E. Congiu , P. Kharb , A. Tarchi 2020
In this paper, we present the analysis of new radio and optical observations of the narrow-line Seyfert 1 galaxy Mrk 783. 1.6 GHz observations performed with the e-MERLIN interferometer confirm the presence of the diffuse emission previously observed . The Very Long Baseline Array (VLBA) also detects the nuclear source both at 1.6 GHz (L-Band) and 5 GHz (C-band). While the L-band image shows only an unresolved core, the C-band image shows the presence of a partially resolved structure, at a position angle of 60{deg}. The brightness temperature of the emission in both bands ($>10^6$ K) suggests that it is a pc-scale jet produced by the AGN. The relatively steep VLBA spectral index ($alpha_{VLBA} = 0.63pm0.03$) is consistent with the presence of optically thin emission on milliarcsecond scales. Finally, we investigated two possible scenarios that can result in the misalignment between the kpc and pc-scale radio structure detected in the galaxy. We also analysed the optical morphology of the galaxy, which suggests that Mrk 783 underwent a merging in relatively recent times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا