ﻻ يوجد ملخص باللغة العربية
We calculate the star formation quenching timescales in green valley galaxies at intermediate redshifts ($zsim0.5-1$) using stacked zCOSMOS spectra of different galaxy morphological types: spheroidal, disk-like, irregular and merger, dividing disk-like galaxies further into unbarred, weakly-barred and strongly-barred, assuming a simple exponentially-decaying star formation history model and based on the H$_{delta}$ absorption feature and the $4000$ AA ~break. We find that different morphological types present different star formation quenching timescales, reinforcing the idea that the galaxy morphology is strongly correlated with the physical processes responsible for quenching star formation. Our quantification of the star formation quenching timescale indicates that disks have typical timescales $60%$ to 5 times longer than that of galaxies presenting spheroidal, irregular or merger morphologies. Barred galaxies in particular present the slowest transition timescales through the green valley. This suggests that although secular evolution may ultimately lead to gas exhaustion in the host galaxy via bar-induced gas inflows that trigger star formation activity, secular agents are not major contributors in the rapid quenching of galaxies at these redshifts. Galaxy interaction, associated with the elliptical, irregular and merger morphologies contribute, to a more significant degree, to the fast transition through the green valley at these redshifts. In the light of previous works suggesting that both secular and merger processes are responsible for the star formation quenching at low redshifts, our results provide an explanation to the recent findings that star formation quenching happened at a faster pace at $zsim0.8$.
We use SDSS+textit{GALEX}+Galaxy Zoo data to study the quenching of star formation in low-redshift galaxies. We show that the green valley between the blue cloud of star-forming galaxies and the red sequence of quiescent galaxies in the colour-mass d
We analyze the SDSS data to classify the galaxies based on their colour using a fuzzy set-theoretic method and quantify their environments using the local dimension. We find that the fraction of the green galaxies does not depend on the environment a
The bimodality in galaxy properties has been observed at low and high redshift, with a clear distinction between star-forming galaxies in the blue cloud and passively evolving objects in the red sequence; the absence of galaxies with intermediate pro
Does galaxy evolution proceed through the green valley via multiple pathways or as a single population? Motivated by recent results highlighting radically different evolutionary pathways between early- and late-type galaxies, we present results from
We study the role of cold gas in quenching star formation in the green valley by analysing ALMA $^{12}$CO (1-0) observations of three galaxies with resolved optical spectroscopy from the MaNGA survey. We present resolution-matched maps of the star fo