ﻻ يوجد ملخص باللغة العربية
We explain how asymptotic safety arises in four-dimensional supersymmetric gauge theories. We provide asymptotically safe supersymmetric gauge theories together with their superconformal fixed points, R-charges, phase diagrams, and UV-IR connecting trajectories. Strict perturbative control is achieved in a Veneziano limit. Consistency with unitarity and the a-theorem is established. We find that supersymmetry enhances the predictivity of asymptotically safe theories.
We study interacting fixed points and phase diagrams of simple and semi-simple quantum field theories in four dimensions involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. Particular emphasis is put on new phenomena whic
All known examples of four dimensional quantum field theories with asymptotic freedom or asymptotic safety at weak coupling involve non-abelian gauge interactions. We demonstrate that this is not a coincidence: no weakly coupled fixed points, ultravi
Interacting fixed points in four-dimensional gauge theories coupled to matter are investigated using perturbation theory up to three loop order. It is shown how fixed points, scaling exponents, and anomalous dimensions are obtained as a systematic po
Using Majorana fermions and elementary mesons we find new massless quantum field theories with weakly interacting ultraviolet fixed points. We also find new classes of large N equivalences amongst SU, SO and Sp gauge theories with different types of
We study the ultraviolet stability of gravity-matter systems for general numbers of minimally coupled scalars and fermions. This is done within the functional renormalisation group setup put forward in cite{Christiansen:2015rva} for pure gravity. It