ﻻ يوجد ملخص باللغة العربية
Apoptosis is essential for numerous processes, such as development, resistance to infections, and suppression of tumorigenesis. Here, we investigate the influence of the nutrient sensing and longevity-assuring enzyme SIRT6 on the dynamics of apoptosis triggered by serum starvation. Specifically, we characterize the progression of apoptosis in wild type and SIRT6 deficient mouse embryonic fibroblasts using time-lapse flow cytometry and computational modelling based on rate-equations and cell distribution analysis. We find that SIRT6 deficient cells resist apoptosis by delaying its initiation. Interestingly, once apoptosis is initiated, the rate of its progression is higher in SIRT6 null cells compared to identically cultured wild type cells. However, SIRT6 null cells succumb to apoptosis more slowly, not only in response to nutrient deprivation but also in response to other stresses. Our data suggest that SIRT6 plays a role in several distinct steps of apoptosis. Overall, we demonstrate the utility of our computational model to describe stages of apoptosis progression and the integrity of the cellular membrane. Such measurements will be useful in a broad range of biological applications. We describe a computational method to evaluate the progression of apoptosis through different stages. Using this method, we describe how cells devoid of SIRT6 longevity gene respond to apoptosis stimuli, specifically, how they respond to starvation. We find that SIRT6 cells resist apoptosis initiation; however, once initiated, they progress through the apoptosis at a faster rate. These data are first of the kind and suggest that SIRT6 activities might play different roles at different stages of apoptosis. The model that we propose can be used to quantitatively evaluate progression of apoptosis and will be useful in studies of cancer treatments and other areas where apoptosis is involved.
We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell
In order to find effective treatments for Alzheimers disease (AD), we need to identify subjects at risk of AD as early as possible. To this end, recently developed disease progression models can be used to perform early diagnosis, as well as predict
SMAR1 is a sensitive signaling molecule in p53 regulatory network which can drive p53 network dynamics to three distinct states, namely, stabilized (two), damped and sustain oscillation states. In the interaction of p53 network with SMAR1, p53 networ
Numerous biological approaches are available to characterise the mechanisms which govern the formation of human embryonic stem cell (hESC) colonies. To understand how the kinematics of single and pairs of hESCs impact colony formation, we study their
Motivation: We introduce TRONCO (TRanslational ONCOlogy), an open-source R package that implements the state-of-the-art algorithms for the inference of cancer progression models from (epi)genomic mutational profiles. TRONCO can be used to extract pop