ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron star mergers as a probe of modifications of general relativity with finite-range scalar forces

229   0   0.0 ( 0 )
 نشر من قبل Jun Zhang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of gravitational radiation from compact binary systems provide an unprecedented opportunity to test General Relativity in the strong field dynamical regime. In this paper, we investigate how future observations of gravitational radiation from binary neutron star mergers might provide constraints on finite-range forces from a universally coupled massive scalar field. Such scalar degrees of freedom are a characteristic feature of many extensions of General Relativity. For concreteness, we work in the context of metric $f(R)$ gravity, which is equivalent to General Relativity and a universally coupled scalar field with a non-linear potential whose form is fixed by the choice of $f(R)$. In theories where neutron stars (or other compact objects) obtain a significant scalar charge, the resulting attractive finite-range scalar force has implications for both the inspiral and merger phases of binary systems. We first present an analysis of the inspiral dynamics in Newtonian limit, and forecast the constraints on the mass of the scalar and charge of the compact objects for the Advanced LIGO gravitational wave observatory. We then perform a comparative study of binary neutron star mergers in General Relativity with those of a one-parameter model of $f(R)$ gravity using fully relativistic hydrodynamical simulations. These simulations elucidate the effects of the scalar on the merger and post-merger dynamics. We comment on the utility of the full waveform (inspiral, merger, post-merger) to probe different regions of parameter space for both the particular model of $f(R)$ gravity studied here and for finite-range scalar forces more generally.



قيم البحث

اقرأ أيضاً

We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different spin configurations and dimensionless spin magnitudes $sim 0.1$. They start at a gravitational-wave frequency of $sim392$~Hz and cover more than $1$ precession period and about 15 orbits up to merger. We discuss the spin precession dynamics by analyzing coordinate trajectories, quasi-local spin measurements, and energetics, by comparing spin aligned, antialigned, and irrotational configurations. Gravitational waveforms from different spin configuration are compared by calculating the mismatch between pairs of waveforms in the late inspiral. We find that precession effects are not distinguishable from nonprecessing configurations with aligned spins for approximately face-on binaries, while the latter are distinguishable from a nonspinning configurations. Spin precession effects are instead clearly visible for approximately edge-on binaries. For the parameters considered here, precession does not significantly affect the characteristic postmerger gravitational-wave frequencies nor the mass ejection. Our results pave the way for the modeling of spin precession effects in the gravitational waveform from binary neutron star events.
The recent detection of gravitational waves and electromagnetic counterparts emitted during and after the collision of two neutron stars marks a breakthrough in the field of multi-messenger astronomy. Numerical relativity simulations are the only too l to describe the binarys merger dynamics in the regime when speeds are largest and gravity is strongest. In this work we report state-of-the-art binary neutron star simulations for irrotational (non-spinning) and spinning configurations. The main use of these simulations is to model the gravitational-wave signal. Key numerical requirements are the understanding of the convergence properties of the numerical data and a detailed error budget. The simulations have been performed on different HPC clusters, they use multiple grid resolutions, and are based on eccentricity reduced quasi-circular initial data. We obtain convergent waveforms with phase errors of 0.5-1.5 rad accumulated over approximately 12 orbits to merger. The waveforms have been used for the construction of a phenomenological waveform model which has been applied for the analysis of the recent binary neutron star detection. Additionally, we show that the data can also be used to test other state-of-the-art semi-analytical waveform models.
We analyze the properties of the gravitational wave signal emitted after the merger of a binary neutron star system when the remnant survives for more than a 80 ms (and up to 140ms). We employ four different piecewise polytropic equations of state su pplemented by an ideal fluid thermal component. We find that the post-merger phase can be subdivided into three phases: an early post-merger phase (where the quadrupole mode and a few subdominant features are active), the intermediate post-merger phase (where only the quadrupole mode is active) and the late post-merger phase (where convective instabilities trigger inertial modes). The inertial modes have frequencies somewhat smaller than the quadrupole modes. In one model, we find an interesting association of a corotation of the quadrupole mode in parts of the star with a revival of its amplitude. The gravitational wave emission of inertial modes in the late post-merger phase is concentrated in a narrow frequency region and is potentially detectable by the planned third-generation detectors. This allows for the possibility of probing not only the cold part of the equation of state, but also its dependence on finite temperature. In view of these results, it will be important to investigate the impact of various type of viscosities on the potential excitation of inertial modes in binary neutron star merger remnants.
We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realist ic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies we utilize analytical fits to postmerger numerical-relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasi-universal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy.
Each of the potential signals from a black hole-neutron star merger should contain an imprint of the neutron star equation of state: gravitational waves via its effect on tidal disruption, the kilonova via its effect on the ejecta, and the gamma ray burst via its effect on the remnant disk. These effects have been studied by numerical simulations and quantified by semi-analytic formulae. However, most of the simulations on which these formulae are based use equations of state without finite temperature and composition-dependent nuclear physics. In this paper, we simulate black hole-neutron star mergers varying both the neutron star mass and the equation of state, using three finite-temperature nuclear models of varying stiffness. Our simulations largely vindicate formulae for ejecta properties but do not find the expected dependence of disk mass on neutron star compaction. We track the early evolution of the accretion disk, largely driven by shocking and fallback inflow, and do find notable equation of state effects on the structure of this early-time, neutrino-bright disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا