ترغب بنشر مسار تعليمي؟ اضغط هنا

The Impact of Speed and Bias on the Cognitive Processes of Experts and Novices in Medical Image Decision-making

58   0   0.0 ( 0 )
 نشر من قبل William Holmes
 تاريخ النشر 2017
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Training individuals to make accurate decisions from medical images is a critical component of education in diagnostic pathology. We describe a joint experimental and computational modeling approach to examine the similarities and differences in the cognitive processes of novice participants and experienced participants (pathology residents and pathology faculty) in cancer cell image identification. For this study we collected a bank of hundreds of digital images that were identified by cell type and classified by difficulty by a panel of expert hematopathologists. The key manipulations in our study included examining the speed-accuracy tradeoff as well as the impact of prior expectations on decisions. In addition, our study examined individual differences in decision-making by comparing task performance to domain general visual ability (as measured using the Novel Object Memory Test (NOMT) (Richler et al., 2017). Using Signal Detection Theory (SDT) and the Diffusion Decision Model (DDM), we found many similarities between expert and novices in our task. While experts tended to have better discriminability, the two groups responded similarly to time pressure (i.e., reduced caution under speed instructions in the DDM) and to the introduction of a probabilistic cue (i.e., increased response bias in the DDM). These results have important implications for training in this area as well as using novice participants in research on medical image perception and decision-making.



قيم البحث

اقرأ أيضاً

An important role carried out by cyber-security experts is the assessment of proposed computer systems, during their design stage. This task is fraught with difficulties and uncertainty, making the knowledge provided by human experts essential for su ccessful assessment. Today, the increasing number of progressively complex systems has led to an urgent need to produce tools that support the expert-led process of system-security assessment. In this research, we use weighted averages (WAs) and ordered weighted averages (OWAs) with evolutionary algorithms (EAs) to create aggregation operators that model parts of the assessment process. We show how individual overall ratings for security components can be produced from ratings of their characteristics, and how these individual overall ratings can be aggregated to produce overall rankings of potential attacks on a system. As well as the identification of salient attacks and weak points in a prospective system, the proposed method also highlights which factors and security components contribute most to a components difficulty and attack ranking respectively. A real world scenario is used in which experts were asked to rank a set of technical attacks, and to answer a series of questions about the security components that are the subject of the attacks. The work shows how finding good aggregation operators, and identifying important components and factors of a cyber-security problem can be automated. The resulting operators have the potential for use as decision aids for systems designers and cyber-security experts, increasing the amount of assessment that can be achieved with the limited resources available.
Nature is in constant flux, so animals must account for changes in their environment when making decisions. How animals learn the timescale of such changes and adapt their decision strategies accordingly is not well understood. Recent psychophysical experiments have shown humans and other animals can achieve near-optimal performance at two alternative forced choice (2AFC) tasks in dynamically changing environments. Characterization of performance requires the derivation and analysis of computational models of optimal decision-making policies on such tasks. We review recent theoretical work in this area, and discuss how models compare with subjects behavior in tasks where the correct choice or evidence quality changes in dynamic, but predictable, ways.
192 - Bradly Alicea 2013
Cell functional diversity is a significant determinant on how biological processes unfold. Most accounts of diversity involve a search for sequence or expression differences. Perhaps there are more subtle mechanisms at work. Using the metaphor of inf ormation processing and decision-making might provide a clearer view of these subtleties. Understanding adaptive and transformative processes (such as cellular reprogramming) as a series of simple decisions allows us to use a technique called cellular signal detection theory (cellular SDT) to detect potential bias in mechanisms that favor one outcome over another. We can apply method of detecting cellular reprogramming bias to cellular reprogramming and other complex molecular processes. To demonstrate scope of this method, we will critically examine differences between cell phenotypes reprogrammed to muscle fiber and neuron phenotypes. In cases where the signature of phenotypic bias is cryptic, signatures of genomic bias (pre-existing and induced) may provide an alternative. The examination of these alternates will be explored using data from a series of fibroblast cell lines before cellular reprogramming (pre-existing) and differences between fractions of cellular RNA for individual genes after drug treatment (induced). In conclusion, the usefulness and limitations of this method and associated analogies will be discussed.
Automated decision support can accelerate tedious tasks as users can focus their attention where it is needed most. However, a key concern is whether users overly trust or cede agency to automation. In this paper, we investigate the effects of introd ucing automation to annotating clinical texts--a multi-step, error-prone task of identifying clinical concepts (e.g., procedures) in medical notes, and mapping them to labels in a large ontology. We consider two forms of decision aid: recommending which labels to map concepts to, and pre-populating annotation suggestions. Through laboratory studies, we find that 18 clinicians generally build intuition of when to rely on automation and when to exercise their own judgement. However, when presented with fully pre-populated suggestions, these expert users exhibit less agency: accepting improper mentions, and taking less initiative in creating additional annotations. Our findings inform how systems and algorithms should be designed to mitigate the observed issues.
What happen in the brain when human beings play games with computers? Here a simple zero-sum game was conducted to investigate how people make decision via their brain even they know that their opponent is a computer. There are two choices (a low or high number) for people and also two strategies for the computer (red color or green color). When the number selected by the human subject meet the red color, the person loses the score which is equal to the number. On the contrary, the person gains the number of score if the computer chooses a green color for the number selected by the human being. Both the human subject and the computer give their choice at the same time, and subjects have been told that the computer make its decision randomly on the red color or green color. During the experiments, the signal of electroencephalograph (EEG) obtained from brain of subjects was recorded. From the analysis of EEG, we find that people mind the loss more than the gain, and the phenomenon becoming obvious when the gap between loss and gain grows. In addition, the signal of EEG is clearly distinguishable before making different decisions. It is observed that significant negative waves in the entire brain region when the participant has a greater expectation for the outcome, and these negative waves are mainly concentrated in the forebrain region in the brain of human beings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا