ﻻ يوجد ملخص باللغة العربية
In contrast with traditional video, omnidirectional video enables spherical viewing direction with support for head-mounted displays, providing an interactive and immersive experience. Unfortunately, to the best of our knowledge, there are few visual quality assessment (VQA) methods, either subjective or objective, for omnidirectional video coding. This paper proposes both subjective and objective methods for assessing quality loss in encoding omnidirectional video. Specifically, we first present a new database, which includes the viewing direction data from several subjects watching omnidirectional video sequences. Then, from our database, we find a high consistency in viewing directions across different subjects. The viewing directions are normally distributed in the center of the front regions, but they sometimes fall into other regions, related to video content. Given this finding, we present a subjective VQA method for measuring difference mean opinion score (DMOS) of the whole and regional omnidirectional video, in terms of overall DMOS (O-DMOS) and vectorized DMOS (V-DMOS), respectively. Moreover, we propose two objective VQA methods for encoded omnidirectional video, in light of human perception characteristics of omnidirectional video. One method weighs the distortion of pixels with regard to their distances to the center of front regions, which considers human preference in a panorama. The other method predicts viewing directions according to video content, and then the predicted viewing directions are leveraged to allocate weights to the distortion of each pixel in our objective VQA method. Finally, our experimental results verify that both the subjective and objective methods proposed in this paper advance state-of-the-art VQA for omnidirectional video.
The diversity of video delivery pipeline poses a grand challenge to the evaluation of adaptive bitrate (ABR) streaming algorithms and objective quality-of-experience (QoE) models. Here we introduce so-far the largest subject-rated database of its kin
Video live streaming is gaining prevalence among video streaming services, especially for the delivery of popular sporting events. Many objective Video Quality Assessment (VQA) models have been developed to predict the perceptual quality of videos. A
Perceptual quality assessment of the videos acquired in the wilds is of vital importance for quality assurance of video services. The inaccessibility of reference videos with pristine quality and the complexity of authentic distortions pose great cha
Image quality assessment (IQA) models aim to establish a quantitative relationship between visual images and their perceptual quality by human observers. IQA modeling plays a special bridging role between vision science and engineering practice, both
Deep learning based methods have achieved remarkable success in image restoration and enhancement, but most such methods rely on RGB input images. These methods fail to take into account the rich spectral distribution of natural images. We propose a