ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Seebeck effect in a polar antiferromagnet $alpha$-Cu$_{2}$V$_{2}$O$_{7}$

109   0   0.0 ( 0 )
 نشر من قبل Yuki Shiomi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the longitudinal spin Seebeck effect in a polar antiferromagnet $alpha$-Cu$_{2}$V$_{2}$O$_{7}$ in contact with a Pt film. Below the antiferromagnetic transition temperature of $alpha$-Cu$_{2}$V$_{2}$O$_{7}$, spin Seebeck voltages whose magnetic field dependence is similar to that reported in antiferromagnetic MnF$_{2}$$mid$Pt bilayers are observed. Though a small weak-ferromagnetic moment appears owing to the Dzyaloshinskii-Moriya interaction in $alpha$-Cu$_{2}$V$_{2}$O$_{7}$, the magnetic field dependence of spin Seebeck voltages is found to be irrelevant to the weak ferromagnetic moments. The dependences of the spin Seebeck voltages on magnetic fields and temperature are analyzed by a magnon spin current theory. The numerical calculation of spin Seebeck voltages using magnetic parameters of $alpha$-Cu$_{2}$V$_{2}$O$_{7}$ determined by previous neutron scattering studies reveals that the magnetic-field and temperature dependences of the spin Seebeck voltages for $alpha$-Cu$_{2}$V$_{2}$O$_{7}$$mid$Pt are governed by the changes in magnon lifetimes with magnetic fields and temperature.



قيم البحث

اقرأ أيضاً

High-field magnetization of the spin-$1/2$ antiferromagnet $alpha$-Cu$_2$V$_2$O$_7$ was measured in pulsed magnetic fields of up to 56 T in order to study its magnetic phase diagram. When the field was applied along the easy axis (the $a$-axis), two distinct transitions were observed at $H_{c1}=6.5$~T and $H_{c2}=18.0$~T. The former is a spin-flop transition typical for a collinear antiferromagnet and the latter is believed to be a spin-flip transition of canted moments. The canted moments, which are induced by the Dzyaloshinskii-Moriya interactions, anti-align for $H_{c1}<H<H_{c2}$ due to the anisotropic exchange interaction that favors the antiferromagnetic arrangement along the $a$-axis. Above $H_{c2}$, the Zeeman energy of the applied field overcomes the antiferromagnetic anisotropic interaction and the canted moments are aligned along the field direction. Density functional theory was employed to compute the exchange interactions, which were used as inputs for quantum Monte Carlo calculations and then further refined by fitting to the magnetic susceptibility data. Contrary to our previous report in Phys. Rev. B {bf 92}, 024423, the dominant exchange interaction is between the third nearest-neighbor spins, which form zigzag spin-chains that are coupled with one another through an intertwining network of the nonnegligible nearest and second nearest-neighbor interactions. In addition, elastic neutron scattering under the applied magnetic fields of up to 10 T reveals the incommensurate helical spin structure in the spin-flop state.
Time-reversal symmetry breaking is the basic physics concept underpinning many magnetic topological phenomena such as the anomalous Hall effect (AHE) and its quantized variant. The AHE has been primarily accompanied by a ferromagnetic dipole moment, which hinders the topological quantum states and limits data density in memory devices, or by a delicate noncollinear magnetic order with strong spin decoherence, both limiting their applicability. A potential breakthrough is the recent theoretical prediction of the AHE arising from collinear antiferromagnetism in an anisotropic crystal environment. This new mechanism does not require magnetic dipolar or noncollinear fields. However, it has not been experimentally observed to date. Here we demonstrate this unconventional mechanism by measuring the AHE in an epilayer of a rutile collinear antiferromagnet RuO$_2$. The observed anomalous Hall conductivity is large, exceeding 300 S/cm, and is in agreement with the Berry phase topological transport contribution. Our results open a new unexplored chapter of time-reversal symmetry breaking phenomena in the abundant class of collinear antiferromagnetic materials.
The wealth of structural phases seen in the rare-earth disilicate compounds promises an equally rich range of interesting magnetic properties. We report on the crystal growth by the optical floating zone method of members of the rare-earth disilicate family, $R_{2}$Si$_{2}$O$_{7}$ (with $R=$ Er, Ho, and Tm). Through a systematic study, we have optimised the growth conditions for Er$_{2}$Si$_{2}$O$_{7}$. We have grown, for the first time using the floating zone method, crystal boules of Ho$_{2}$Si$_{2}$O$_{7}$ and Tm$_{2}$Si$_{2}$O$_{7}$ compounds. We show that the difficulties encountered in the synthesis of polycrystalline and single crystal samples are due to the similar thermal stability ranges of different rare-earth silicate compounds in the temperature-composition phase diagrams of the $R$-Si-O systems. The addition of a small amount of SiO$_{2}$ excess allowed the amount of impurity phases present in the powder samples to be minimised. The phase composition analysis of the powder X-ray diffraction data collected on the as-grown boules revealed that they were of single phase, except in the case of thulium disilicate, which comprised of two phases. All growths resulted in multi-grain boules, from which sizable single crystals could be isolated. The optimum conditions used for the synthesis and crystal growth of polycrystalline and single crystal $R_{2}$Si$_{2}$O$_{7}$ materials are reported. Specific heat measurements of erbium and thulium disilicate compounds confirm an antiferromagnetic phase transition below $T_{mathrm{N}}=$ 1.8 K for D-type Er$_{2}$Si$_{2}$O$_{7}$ and a Schottky anomaly centered around 3.5 K in C-type Tm$_{2}$Si$_{2}$O$_{7}$, suggesting the onset of short-range magnetic correlations. Magnetic susceptibility data of E-type Ho$_{2}$Si$_{2}$O$_{7}$ reveals an antiferromagnetic ordering of the Ho spins below $T_mathrm{{N}}=$ 2.3 K.
Lightly doped III-V semiconductor InAs is a dilute metal, which can be pushed beyond its extreme quantum limit upon the application of a modest magnetic field. In this regime, a Mott-Anderson metal-insulator transition, triggered by the magnetic fiel d, leads to a depletion of carrier concentration by more than one order of magnitude. Here, we show that this transition is accompanied by a two-hundred-fold enhancement of the Seebeck coefficient which becomes as large as 11.3mV.K$^{-1}approx 130frac{k_B}{e}$ at T=8K and B=29T. We find that the magnitude of this signal depends on sample dimensions and conclude that it is caused by phonon drag, resulting from a large difference between the scattering time of phonons (which are almost ballistic) and electrons (which are almost localized in the insulating state). Our results reveal a path to distinguish between possible sources of large thermoelectric response in other low density systems pushed beyond the quantum limit.
Achieving multiferroic two-dimensional (2D) materials should enable numerous functionalities in nanoscale devices. Until now, however, predicted 2D multiferroics are very few and with coexisting yet only loosely coupled (type-I) ferroelectricity and magnetism. Here, a type-II multiferroic MXene Hf$_{2}$VC$_{2}$F$_{2}$ monolayer is identified, where ferroelectricity originates directly from its magnetism. The noncollinear Y-type spin order generates a polarization perpendicular to the spin helical plane. Remarkably, the multiferroic transition is estimated to occur above room temperature. Our investigation should open the door to a new branch of 2D materials for pursuit of intrinsically strong magnetoelectricity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا