ترغب بنشر مسار تعليمي؟ اضغط هنا

Rethink ReLU to Training Better CNNs

67   0   0.0 ( 0 )
 نشر من قبل Gangming Zhao
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most of convolutional neural networks share the same characteristic: each convolutional layer is followed by a nonlinear activation layer where Rectified Linear Unit (ReLU) is the most widely used. In this paper, we argue that the designed structure with the equal ratio between these two layers may not be the best choice since it could result in the poor generalization ability. Thus, we try to investigate a more suitable method on using ReLU to explore the better network architectures. Specifically, we propose a proportional module to keep the ratio between convolution and ReLU amount to be N:M (N>M). The proportional module can be applied in almost all networks with no extra computational cost to improve the performance. Comprehensive experimental results indicate that the proposed method achieves better performance on different benchmarks with different network architectures, thus verify the superiority of our work.

قيم البحث

اقرأ أيضاً

117 - Pichao Wang , Xue Wang , Hao Luo 2021
Vision transformers (ViTs) have been an alternative design paradigm to convolutional neural networks (CNNs). However, the training of ViTs is much harder than CNNs, as it is sensitive to the training parameters, such as learning rate, optimizer and w armup epoch. The reasons for training difficulty are empirically analysed in ~cite{xiao2021early}, and the authors conjecture that the issue lies with the textit{patchify-stem} of ViT models and propose that early convolutions help transformers see better. In this paper, we further investigate this problem and extend the above conclusion: only early convolutions do not help for stable training, but the scaled ReLU operation in the textit{convolutional stem} (textit{conv-stem}) matters. We verify, both theoretically and empirically, that scaled ReLU in textit{conv-stem} not only improves training stabilization, but also increases the diversity of patch tokens, thus boosting peak performance with a large margin via adding few parameters and flops. In addition, extensive experiments are conducted to demonstrate that previous ViTs are far from being well trained, further showing that ViTs have great potential to be a better substitute of CNNs.
140 - Juncai He , Lin Li , Jinchao Xu 2021
This paper is devoted to establishing $L^2$ approximation properties for deep ReLU convolutional neural networks (CNNs) on two-dimensional space. The analysis is based on a decomposition theorem for convolutional kernels with large spatial size and m ulti-channel. Given that decomposition and the property of the ReLU activation function, a universal approximation theorem of deep ReLU CNNs with classic structure is obtained by showing its connection with ReLU deep neural networks (DNNs) with one hidden layer. Furthermore, approximation properties are also obtained for neural networks with ResNet, pre-act ResNet, and MgNet architecture based on connections between these networks.
129 - Kang Zhao , Sida Huang , Pan Pan 2021
Researches have demonstrated that low bit-width (e.g., INT8) quantization can be employed to accelerate the inference process. It makes the gradient quantization very promising since the backward propagation requires approximately twice more computat ion than forward one. Due to the variability and uncertainty of gradient distribution, a lot of methods have been proposed to attain training stability. However, most of them ignore the channel-wise gradient distributions and the impact of gradients with different magnitudes, resulting in the degradation of final accuracy. In this paper, we propose a novel INT8 quantization training framework for convolutional neural network to address the above issues. Specifically, we adopt Gradient Vectorized Quantization to quantize the gradient, based on the observation that layer-wise gradients contain multiple distributions along the channel dimension. Then, Magnitude-aware Clipping Strategy is introduced by taking the magnitudes of gradients into consideration when minimizing the quantization error, and we present a theoretical derivation to solve the quantization parameters of different distributions. Experimental results on broad range of computer vision tasks, such as image classification, object detection and video classification, demonstrate that the proposed Distribution Adaptive INT8 Quantization training method has achieved almost lossless training accuracy for different backbones, including ResNet, MobileNetV2, InceptionV3, VGG and AlexNet, which is superior to the state-of-the-art techniques. Moreover, we further implement the INT8 kernel that can accelerate the training iteration more than 200% under the latest Turing architecture, i.e., our method excels on both training accuracy and speed.
Compared with global average pooling in existing deep convolutional neural networks (CNNs), global covariance pooling can capture richer statistics of deep features, having potential for improving representation and generalization abilities of deep C NNs. However, integration of global covariance pooling into deep CNNs brings two challenges: (1) robust covariance estimation given deep features of high dimension and small sample size; (2) appropriate usage of geometry of covariances. To address these challenges, we propose a global Matrix Power Normalized COVariance (MPN-COV) Pooling. Our MPN-COV conforms to a robust covariance estimator, very suitable for scenario of high dimension and small sample size. It can also be regarded as Power-Euclidean metric between covariances, effectively exploiting their geometry. Furthermore, a global Gaussian embedding network is proposed to incorporate first-order statistics into MPN-COV. For fast training of MPN-COV networks, we implement an iterative matrix square root normalization, avoiding GPU unfriendly eigen-decomposition inherent in MPN-COV. Additionally, progressive 1x1 convolutions and group convolution are introduced to compress covariance representations. The proposed methods are highly modular, readily plugged into existing deep CNNs. Extensive experiments are conducted on large-scale object classification, scene categorization, fine-grained visual recognition and texture classification, showing our methods outperform the counterparts and obtain state-of-the-art performance.
115 - Xudong Wang , Stella X. Yu 2020
Convolution is the main building block of convolutional neural networks (CNN). We observe that an optimized CNN often has highly correlated filters as the number of channels increases with depth, reducing the expressive power of feature representatio ns. We propose Tied Block Convolution (TBC) that shares the same thinner filters over equal blocks of channels and produces multiple responses with a single filter. The concept of TBC can also be extended to group convolution and fully connected layers, and can be applied to various backbone networks and attention modules. Our extensive experimentation on classification, detection, instance segmentation, and attention demonstrates TBCs significant across-the-board gain over standard convolution and group convolution. The proposed TiedSE attention module can even use 64 times fewer parameters than the SE module to achieve comparable performance. In particular, standard CNNs often fail to accurately aggregate information in the presence of occlusion and result in multiple redundant partial object proposals. By sharing filters across channels, TBC reduces correlation and can effectively handle highly overlapping instances. TBC increases the average precision for object detection on MS-COCO by 6% when the occlusion ratio is 80%. Our code will be released.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا