ترغب بنشر مسار تعليمي؟ اضغط هنا

Saturation of energetic-particle-driven geodesic acoustic modes due to wave-particle nonlinearity

69   0   0.0 ( 0 )
 نشر من قبل Alessandro Biancalani Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nonlinear dynamics of energetic-particle (EP) driven geodesic acoustic modes (EGAM) is investigated here. A numerical analysis with the global gyrokinetic particle-in-cell code ORB5 is performed, and the results are interpreted with the analytical theory, in close comparison with the theory of the beam-plasma instability. Only axisymmetric modes are considered, with a nonlinear dynamics determined by wave-particle interaction. Quadratic scalings of the saturated electric field with respect to the linear growth rate are found for the case of interest. The EP bounce frequency is calculated as a function of the EGAM frequency, and shown not to depend on the value of the bulk temperature. Near the saturation, we observe a transition from adiabatic to non-adiabatic dynamics, i.e., the frequency chirping rate becomes comparable to the resonant EP bounce frequency. The numerical analysis is performed here with electrostatic simulations with circular flux surfaces, and kinetic effects of the electrons are neglected.

قيم البحث

اقرأ أيضاً

Turbulence in tokamaks generates radially sheared zonal flows. Their oscillatory counterparts, geodesic acoustic modes (GAMs), appear due to the action of the magnetic field curvature. The GAMs can be driven unstable by an anisotropic energetic parti cle (EP) population leading to the formation of global radial structures, called EGAMs. The EGAMs can redistribute EP energy to the bulk plasma through collisionless wave-particle interaction. In such a way, the EGAMs might contribute to the plasma heating. Thus, investigation of EGAM properties, especially in the velocity space, is necessary for precise understanding of the transport phenomena in tokamak plasmas. In this work, the nonlinear dynamics of EGAMs without considering the mode interaction with the turbulence is investigated with the help of a Mode-Particle-Resonance (MPR) diagnostic implemented in the global gyrokinetic particle-in-cell code ORB5. An ASDEX Upgrade discharge is chosen as a reference case for this investigation due to its rich EP nonlinear dynamics. An experimentally relevant magnetic field configuration, thermal species profiles and an EP density profile are taken for EGAM chirping modelling and its comparison with available empirical data. The same magnetic configuration is used to explore energy transfer by the mode from the energetic particles to the thermal plasma including kinetic electron effects. For a given EGAM level the plasma heating by the mode can be significantly enhanced by varying the EP parameters. Electron dynamics decreases the EGAM saturation amplitude and consequently reduces the plasma heating, even though the mode transfers its energy to thermal ions much more than to electrons.
This paper presents a study of the interaction between Alfven modes and zonal structures, considering a realistic ASDEX Upgrade equilibrium. The results of gyrokinetic simulations with the global, electromagnetic, particle-in-cell code ORB5 are prese nted, where the modes are driven unstable by energetic particles with a bump-on-tail equilibrium distribution function, with radial density gradient. Two regimes have been observed: at low energetic particles concentration, the Alfven mode saturates at much higher level in presence of zonal structures; on the other hand at high energetic particles concentration the difference is less pronounced. The former regime is characterized by the zonal structure (identified as an energetic particle driven geodesic acoustic mode), being more unstable than the Alfven mode. In the latter regime the Alfven mode is more unstable than the zonal structure. The theoretical explanation is given in terms of a 3-wave coupling of the energetic particle driven geodesic acoustic mode and Alfven mode, mediated by the curvature-pressure coupling term of the energetic particles.
The nonlinear dynamics of energetic particle (EP) driven geodesic acoustic modes (EGAM) in tokamaks is investigated, and compared with the beam-plasma system (BPS). The EGAM is studied with the global gyrokinetic (GK) particle-in-cell code ORB5, trea ting the thermal ions and EP (in this case, fast ions) as GK and neglecting the kinetic effects of the electrons. The wave-particle nonlinearity only is considered in the EGAM nonlinear dynamics. The BPS is studied with a 1D code where the thermal plasma is treated as a linear dielectric, and the EP (in this case, fast electrons) with an n-body hamiltonian formulation. A one-to-one mapping between the EGAM and the BPS is described. The focus is on understanding and predicting the EP redistribution in phase space. We identify here two distint regimes for the mapping: in the low-drive regime, the BPS mapping with the EGAM is found to be complete, and in the high-drive regime, the EGAM dynamics and the BPS dynamics are found to differ. The transition is described with the presence of a non-negligible frequency chirping, which affects the EGAM but not the BPS, above the identified drive threshold. The difference can be resolved by adding an ad-hoc frequency modification to the BPS model. As a main result, the formula for the prediction of the nonlinear width of the velocity redistribution around the resonance velocity is provided.
Secondary low frequency mode generation by energetic particle induced geodesic acoustic mode (EGAM) observed in LHD experiment is studied using nonlinear gyrokinetic theory. It is found that the EGAM frequency can be significantly higher than local g eodesic acoustic mode (GAM) frequency in low collisionality plasmas, and it can decay into two GAMs as its frequency approaches twice GAM frequency, in a process analogous to the well-known two plasmon decay instability. The condition for this process to occur is also discussed.
93 - A. Di Siena , T. Gorler , E. Poli 2018
In recent years, a strong reduction of plasma turbulence in the presence of energetic particles has been reported in a number of magnetic confinement experiments and corresponding gyrokinetic simulations. While highly relevant to performance predicti ons for burning plasmas, an explanation for this primarily nonlinear effect has remained elusive so far. A thorough analysis finds that linearly marginally stable energetic particle driven modes are excited nonlinearly, depleting the energy content of the turbulence and acting as an additional catalyst for energy transfer to zonal modes (the dominant turbulence saturation channel). Respective signatures are found in a number of simulations for different JET and ASDEX Upgrade discharges with reduced transport levels attributed to energetic ion effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا