ﻻ يوجد ملخص باللغة العربية
The nonlinear dynamics of energetic-particle (EP) driven geodesic acoustic modes (EGAM) is investigated here. A numerical analysis with the global gyrokinetic particle-in-cell code ORB5 is performed, and the results are interpreted with the analytical theory, in close comparison with the theory of the beam-plasma instability. Only axisymmetric modes are considered, with a nonlinear dynamics determined by wave-particle interaction. Quadratic scalings of the saturated electric field with respect to the linear growth rate are found for the case of interest. The EP bounce frequency is calculated as a function of the EGAM frequency, and shown not to depend on the value of the bulk temperature. Near the saturation, we observe a transition from adiabatic to non-adiabatic dynamics, i.e., the frequency chirping rate becomes comparable to the resonant EP bounce frequency. The numerical analysis is performed here with electrostatic simulations with circular flux surfaces, and kinetic effects of the electrons are neglected.
Turbulence in tokamaks generates radially sheared zonal flows. Their oscillatory counterparts, geodesic acoustic modes (GAMs), appear due to the action of the magnetic field curvature. The GAMs can be driven unstable by an anisotropic energetic parti
This paper presents a study of the interaction between Alfven modes and zonal structures, considering a realistic ASDEX Upgrade equilibrium. The results of gyrokinetic simulations with the global, electromagnetic, particle-in-cell code ORB5 are prese
The nonlinear dynamics of energetic particle (EP) driven geodesic acoustic modes (EGAM) in tokamaks is investigated, and compared with the beam-plasma system (BPS). The EGAM is studied with the global gyrokinetic (GK) particle-in-cell code ORB5, trea
Secondary low frequency mode generation by energetic particle induced geodesic acoustic mode (EGAM) observed in LHD experiment is studied using nonlinear gyrokinetic theory. It is found that the EGAM frequency can be significantly higher than local g
In recent years, a strong reduction of plasma turbulence in the presence of energetic particles has been reported in a number of magnetic confinement experiments and corresponding gyrokinetic simulations. While highly relevant to performance predicti