ﻻ يوجد ملخص باللغة العربية
Deep learning driven by large neural network models is overtaking traditional machine learning methods for understanding unstructured and perceptual data domains such as speech, text, and vision. At the same time, the as-a-Service-based business model on the cloud is fundamentally transforming the information technology industry. These two trends: deep learning, and as-a-service are colliding to give rise to a new business model for cognitive application delivery: deep learning as a service in the cloud. In this paper, we will discuss the details of the software architecture behind IBMs deep learning as a service (DLaaS). DLaaS provides developers the flexibility to use popular deep learning libraries such as Caffe, Torch and TensorFlow, in the cloud in a scalable and resilient manner with minimal effort. The platform uses a distribution and orchestration layer that facilitates learning from a large amount of data in a reasonable amount of time across compute nodes. A resource provisioning layer enables flexible job management on heterogeneous resources, such as graphics processing units (GPUs) and central processing units (CPUs), in an infrastructure as a service (IaaS) cloud.
Deep learning (DL), a form of machine learning, is becoming increasingly popular in several application domains. As a result, cloud-based Deep Learning as a Service (DLaaS) platforms have become an essential infrastructure in many organizations. Thes
The global economic recession and the shrinking budget of IT projects have led to the need of development of integrated information systems at a lower cost. Today, the emerging phenomenon of cloud computing aims at transforming the traditional way of
Fully Homomorphic Encryption (FHE) is a relatively recent advancement in the field of privacy-preserving technologies. FHE allows for the arbitrary depth computation of both addition and multiplication, and thus the application of abelian/polynomial
Cloud computing has attracted both end-users and Cloud Service Providers (CSPs) in recent years. Improving resource utilization rate (RUtR), such as CPU and memory usages on servers, while maintaining Quality-of-Service (QoS) is one key challenge fac
Given a large number of online services on the Internet, from time to time, people are still struggling to find out the services that they need. On the other hand, when there are considerable research and development on service discovery and service