ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond SIFT using Binary features for Loop Closure Detection

75   0   0.0 ( 0 )
 نشر من قبل Lei Han
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper a binary feature based Loop Closure Detection (LCD) method is proposed, which for the first time achieves higher precision-recall (PR) performance compared with state-of-the-art SIFT feature based approaches. The proposed system originates from our previous work Multi-Index hashing for Loop closure Detection (MILD), which employs Multi-Index Hashing (MIH)~cite{greene1994multi} for Approximate Nearest Neighbor (ANN) search of binary features. As the accuracy of MILD is limited by repeating textures and inaccurate image similarity measurement, burstiness handling is introduced to solve this problem and achieves considerable accuracy improvement. Additionally, a comprehensive theoretical analysis on MIH used in MILD is conducted to further explore the potentials of hashing methods for ANN search of binary features from probabilistic perspective. This analysis provides more freedom on best parameter choosing in MIH for different application scenarios. Experiments on popular public datasets show that the proposed approach achieved the highest accuracy compared with state-of-the-art while running at 30Hz for databases containing thousands of images.



قيم البحث

اقرأ أيضاً

Fingerprint-based recognition has been widely deployed in various applications. However, current recognition systems are vulnerable to spoofing attacks which make use of an artificial replica of a fingerprint to deceive the sensors. In such scenarios , fingerprint liveness detection ensures the actual presence of a real legitimate fingerprint in contrast to a fake self-manufactured synthetic sample. In this paper, we propose a static software-based approach using quality features to detect the liveness in a fingerprint. We have extracted features from a single fingerprint image to overcome the issues faced in dynamic software-based approaches which require longer computational time and user cooperation. The proposed system extracts 8 sensor independent quality features on a local level containing minute details of the ridge-valley structure of real and fake fingerprints. These local quality features constitutes a 13-dimensional feature vector. The system is tested on a publically available dataset of LivDet 2009 competition. The experimental results exhibit supremacy of the proposed method over current state-of-the-art approaches providing least average classification error of 5.3% for LivDet 2009. Additionally, effectiveness of the best performing features over LivDet 2009 is evaluated on the latest LivDet 2015 dataset which contain fingerprints fabricated using unknown spoof materials. An average classification error rate of 4.22% is achieved in comparison with 4.49% obtained by the LivDet 2015 winner. Further, the proposed system utilizes a single fingerprint image, which results in faster implications and makes it more user-friendly.
We present a visual simultaneous localization and mapping (SLAM) framework of closing surface loops. It combines both sparse feature matching and dense surface alignment. Sparse feature matching is used for visual odometry and globally camera pose fi ne-tuning when dense loops are detected, while dense surface alignment is the way of closing large loops and solving surface mismatching problem. To achieve smart dense surface loop closure, a highly efficient CUDA-based global point cloud registration method and a map content dependent loop verification method are proposed. We run extensive experiments on different datasets, our method outperforms state-of-the-art ones in terms of both camera trajectory and surface reconstruction accuracy.
Volumetric models have become a popular representation for 3D scenes in recent years. One breakthrough leading to their popularity was KinectFusion, which focuses on 3D reconstruction using RGB-D sensors. However, monocular SLAM has since also been t ackled with very similar approaches. Representing the reconstruction volumetrically as a TSDF leads to most of the simplicity and efficiency that can be achieved with GPU implementations of these systems. However, this representation is memory-intensive and limits applicability to small-scale reconstructions. Several avenues have been explored to overcome this. With the aim of summarizing them and providing for a fast, flexible 3D reconstruction pipeline, we propose a new, unifying framework called InfiniTAM. The idea is that steps like camera tracking, scene representation and integration of new data can easily be replaced and adapted to the users needs. This report describes the technical implementation details of InfiniTAM v3, the third version of our InfiniTAM system. We have added various new features, as well as making numerous enhancements to the low-level code that significantly improve our camera tracking performance. The new features that we expect to be of most interest are (i) a robust camera tracking module; (ii) an implementation of Glocker et al.s keyframe-based random ferns camera relocaliser; (iii) a novel approach to globally-consistent TSDF-based reconstruction, based on dividing the scene into rigid submaps and optimising the relative poses between them; and (iv) an implementation of Keller et al.s surfel-based reconstruction approach.
Loop closure detection is an essential component of Simultaneous Localization and Mapping (SLAM) systems, which reduces the drift accumulated over time. Over the years, several deep learning approaches have been proposed to address this task, however their performance has been subpar compared to handcrafted techniques, especially while dealing with reverse loops. In this paper, we introduce the novel LCDNet that effectively detects loop closures in LiDAR point clouds by simultaneously identifying previously visited places and estimating the 6-DoF relative transformation between the current scan and the map. LCDNet is composed of a shared encoder, a place recognition head that extracts global descriptors, and a relative pose head that estimates the transformation between two point clouds. We introduce a novel relative pose head based on the unbalanced optimal transport theory that we implement in a differentiable manner to allow for end-to-end training. Extensive evaluations of LCDNet on multiple real-world autonomous driving datasets show that our approach outperforms state-of-the-art loop closure detection and point cloud registration techniques by a large margin, especially while dealing with reverse loops. Moreover, we integrate our proposed loop closure detection approach into a LiDAR SLAM library to provide a complete mapping system and demonstrate the generalization ability using different sensor setup in an unseen city.
117 - Peihua Li 2010
Contour tracking in adverse environments is a challenging problem due to cluttered background, illumination variation, occlusion, and noise, among others. This paper presents a robust contour tracking method by contributing to some of the key issues involved, including (a) a region functional formulation and its optimization; (b) design of a robust and effective feature; and (c) development of an integrated tracking algorithm. First, we formulate a region functional based on robust Earth Movers distance (EMD) with kernel density for distribution modeling, and propose a two-phase method for its optimization. In the first phase, letting the candidate contour be fixed, we express EMD as the transportation problem and solve it by the simplex algorithm. Next, using the theory of shape derivative, we make a perturbation analysis of the contour around the best solution to the transportation problem. This leads to a partial differential equation (PDE) that governs the contour evolution. Second, we design a novel and effective feature for tracking applications. We propose a dimensionality reduction method by tensor decomposition, achieving a low-dimensional description of SIFT features called Tensor-SIFT for characterizing local image region properties. Applicable to both color and gray-level images, Tensor-SIFT is very distinctive, insensitive to illumination changes, and noise. Finally, we develop an integrated algorithm that combines various techniques of the simplex algorithm, narrow-band level set and fast marching algorithms. Particularly, we introduce an inter-frame initialization method and a stopping criterion for the termination of PDE iteration. Experiments in challenging image sequences show that the proposed work has promising performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا