ﻻ يوجد ملخص باللغة العربية
We proposed a fusion mechanism for the distributed cooperative map matching (CMM) within the vehicular ad-hoc network. This mechanism makes the information from each node reachable within the network by other nodes without direct communication, thus improving the overall localization accuracy and robustness. Each node runs a Rao-Blackwellized particle filter (RBPF) that processes the Global Navigation Satellite System (GNSS) measurements of its own and its neighbors, followed by a map matching step that reduces or eliminates the GNSS atmospheric error. Then each node fuses its own filtered results with those from its neighbors for a better estimation. In this work, the complicated dynamics and fusion mechanics of these RBPFs are represented by a linear dynamical system. We proposed a distributed optimization framework that explores the model to improve both robustness and accuracy of the distributed CMM. The effectiveness of this distributed optimization framework is illustrated by simulation results on realistic vehicular networks drawn from data, compared with the centralized one and a decentralized one with random fusion weights.
In this paper, we proposed the Interpenetrating Cooperative Localization (ICL) method to enhance the localization accuracy in dynamic connected vehicle networks. This mechanism makes the information from one group of connected vehicles interpenetrate
This paper presents a cooperative vehicle sorting strategy that seeks to optimally sort connected and automated vehicles (CAVs) in a multi-lane platoon to reach an ideally organized platoon. In the proposed method, a CAV platoon is firstly discretize
Emergent cooperative adaptive cruise control (CACC) strategies being proposed in the literature for platoon formation in the Connected Autonomous Vehicle (CAV) context mostly assume idealized fixed information flow topologies (IFTs) for the platoon,
This paper is about obtaining stable vehicle platooning by using Cooperative Adaptive Cruise Control when the communication is unreliable and suffers from message losses. We model communication losses as independent random events and we propose an or
Vehicle-to-vehicle communications can be unreliable as interference causes communication failures. Thereby, the information flow topology for a platoon of Connected Autonomous Vehicles (CAVs) can vary dynamically. This limits existing Cooperative Ada