ترغب بنشر مسار تعليمي؟ اضغط هنا

Exclusion of Stellar Companions to Exoplanet Host Stars

303   0   0.0 ( 0 )
 نشر من قبل Stephen Kane
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Given the frequency of stellar multiplicity in the solar neighborhood, it is important to study the impacts this can have on exoplanet properties and orbital dynamics. There have been numerous imaging survey projects established to detect possible low-mass stellar companions to exoplanet host stars. Here we provide the results from a systematic speckle imaging survey of known exoplanet host stars. In total, 71 stars were observed at 692~nm and 880~nm bands using the Differential Speckle Survey Instrument (DSSI) at the Gemini-North Observatory. Our results show that all but 2 of the stars included in this sample have no evidence of stellar companions with luminosities down to the detection and projected separation limits of our instrumentation. The mass-luminosity relationship is used to estimate the maximum mass a stellar companion can have without being detected. These results are used to discuss the potential for further radial velocity follow-up and interpretation of companion signals.



قيم البحث

اقرأ أيضاً

An important aspect of searching for exoplanets is understanding the binarity of the host stars. It is particularly important because nearly half of the solar-like stars within our own Milky Way are part of binary or multiple systems. Moreover, the p resence of two or more stars within a system can place further constraints on planetary formation, evolution, and orbital dynamics. As part of our survey of almost a hundred host stars, we obtained images at 692 nm and 880 nm bands using the Differential Speckle Survey Instrument (DSSI) at the Gemini-North Observatory. From our survey, we detect stellar companions to HD 2638 and HD 164509. The stellar companion to HD 2638 has been previously detected, but the companion to HD 164509 is a newly discovered companion. The angular separation for HD 2638 is $0.512 pm 0.002arcsec$ and for HD 164509 is $0.697 pm 0.002arcsec$. This corresponds to a projected separation of $25.6 pm 1.9$ AU and $36.5 pm 1.9$ AU, respectively. By employing stellar isochrone models, we estimate the mass of the stellar companions of HD 2638 and HD 164509 to be $0.483 pm 0.007$ $M_sun$ and $0.416 pm 0.007$ $M_sun$, respectively, and their effective temperatures to be $3570 pm 8$~K and $3450 pm 7$~K, respectively. These results are consistent with the detected companions being late-type M dwarfs.
Precise and, if possible, accurate characterization of exoplanets cannot be dissociated from the characterization of their host stars. In this chapter we discuss different methods and techniques used to derive fundamental properties and atmospheric p arameters of exoplanet-host stars. The main limitations, advantages and disadvantages, as well as corresponding typical measurement uncertainties of each method are presented.
130 - Elaine Simpson 2010
The stellar rotation periods of ten exoplanet host stars have been determined using newly analysed Ca II H & K flux records from Mount Wilson Observatory and Stromgren b, y photometric measurements from Tennessee State Universitys automatic photometr ic telescopes (APTs) at Fairborn Observatory. Five of the rotation periods have not previously been reported, with that of HD 130322 very strongly detected at Prot = 26.1 pm 3.5 d. The rotation periods of five other stars have been updated using new data. We use the rotation periods to derive the line-of-sight inclinations of the stellar rotation axes, which may be used to probe theories of planet formation and evolution when combined with the planetary orbital inclination found from other methods. Finally, we estimate the masses of fourteen exoplanets under the assumption that the stellar rotation axis is aligned with the orbital axis. We calculate the mass of HD 92788 b (28 MJ) to be within the low-mass brown dwarf regime and suggest that this object warrants further investigation to confirm its true nature.
226 - Kaspar von Braun 2013
We use near-infrared interferometric data coupled with trigonometric parallax values and spectral energy distribution fitting to directly determine stellar radii, effective temperatures, and luminosities for the exoplanet host stars 61 Vir, $rho$ CrB , GJ 176, GJ 614, GJ 649, GJ 876, HD 1461, HD 7924, HD 33564, HD 107383, and HD 210702. Three of these targets are M dwarfs. Statistical uncertainties in the stellar radii and effective temperatures range from 0.5% -- 5% and from 0.2% -- 2%, respectively. For eight of these targets, this work presents the first directly determined values of radius and temperature; for the other three, we provide updates to their properties. The stellar fundamental parameters are used to estimate stellar mass and calculate the location and extent of each systems circumstellar habitable zone. Two of these systems have planets that spend at least parts of their respective orbits in the system habitable zone: two of GJ 876s four planets and the planet that orbits HD 33564. We find that our value for GJ 876s stellar radius is more than 20% larger than previous estimates and frequently used values in the astronomical literature.
We perform a detailed study of six transiting planetary systems with relatively bright stars close enough to affect observations of these systems. Light curves are analysed taking into account the contaminating light and its uncertainty. We present a nd apply a method to correct the velocity amplitudes of the host stars for the presence of contaminating light. We determine the physical properties of six systems (WASP-20, WASP-70, WASP-8, WASP-76, WASP-2 and WASP-131) accounting for contaminating light. In the case of WASP-20 the measured physical properties are very different for the three scenarios considered (ignoring binarity, planet transits brighter star, and planet transits fainter star). In the other five cases our results are very similar to those obtained neglecting contaminating light. We use our results to determine the mean correction factors to planet radius, $langle X_Rrangle$, mass, $langle X_Mrangle$, and density, $langle X_rhorangle$, caused by nearby objects. We find $langle X_Rrangle=1.009pm0.045$, which is smaller than literature values because we were able to reject the possibility that the planet orbits the fainter star in all but one case. We find $langle X_Mrangle=1.031pm0.019$, which is larger than $langle X_Rrangle$ because of the strength of the effect of contaminating light on the radial velocity measurements of the host star. We find $langle X_rhorangle=0.995pm 0.046$: the small size of this correction is due to two effects: the corrections on planet radius and mass partially cancel; and some nearby stars are close enough to contaminate the light curves of the system but not radial velocities of the host star. We conclude that binarity of planet host stars is important for the small number of transiting hot Jupiters with a very bright and close nearby star, but it has only a small effect on population-level studies of these objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا