ﻻ يوجد ملخص باللغة العربية
A constant height of gallium nitride (GaN) nanowires with graphene deposited on them is shown to have a strong enhancement of Raman scattering, whilst variable height nanowires fail to give such an enhancement. Scanning electron microscopy reveals a smooth graphene surface which is present when the GaN nanowires are uniform, whereas graphene on nanowires with substantial height differences is observed to be pierced and stretched by the uppermost nanowires. The energy shifts of the characteristic Raman bands confirms that these differences in the nanowire height has a significant impact on the local graphene strain and the carrier concentration. The images obtained by Kelvin probe force microscopy show clearly that the carrier concentration in graphene is modulated by the nanowire substrate and dependent on the nanowire density. Therefore, the observed surface enhanced Raman scattering for graphene deposited on GaN nanowires of comparable height is triggered by self-induced nano-gating to the graphene. However, no clear correlation of the enhancement with the strain or the carrier concentration of graphene was discovered.
We present detailed Raman studies of graphene deposited on gallium nitride nanowires with different variations in height. Our results show that different density and height of nanowires being in contact with graphene impact graphene properties like r
The influence of GaN nanowires on the optical and electrical properties of graphene deposited on them was studied using Raman spectroscopy and microwave induced electron transport method. It was found that interaction with the nanowires induces spect
The surface-enhanced Raman scattering in graphene deposited on AlxGa1-xN/GaN axial heterostructure nanowires was investigated. The intensity of graphene Raman spectra was found not to be correlated with aluminium content. Analysis of graphene Raman b
Surface-enhanced Raman spectroscopy is a powerful and versatile sensing method with a detection limit down to the single molecule level. In this article, we demonstrate how topology optimization (TopOpt) can be used for designing surface enhanced Ram
Umklapp processes play a fundamental role as the only intrinsic mechanism that allows electrons to transfer momentum to the crystal lattice and, therefore, provide a finite electrical resistance in pure metals. However, umklapp scattering has proven