ﻻ يوجد ملخص باللغة العربية
We describe a modular rewriting system for translating optimization problems written in a domain-specific language to forms compatible with low-level solver interfaces. Translation is facilitated by reductions, which accept a category of problems and transform instances of that category to equivalent instances of another category. Our system proceeds in two key phases: analysis, in which we attempt to find a suitable solver for a supplied problem, and canonicalization, in which we rewrite the problem in the selected solvers standard form. We implement the described system in version 1.0 of CVXPY, a domain-specific language for mathematical and especially convex optimization. By treating reductions as first-class objects, our method makes it easy to match problems to solvers well-suited for them and to support solvers with a wide variety of standard forms.
We propose an algorithm for solving nonlinear convex programs defined in terms of a symmetric positive semidefinite matrix variable $X$. This algorithm rests on the factorization $X=Y Y^T$, where the number of columns of Y fixes the rank of $X$. It i
We present new results on optimization problems where the involved functions are evenly convex. By means of a generalized conjugation scheme and the perturbation theory introduced by Rockafellar, we propose an alternative dual problem for a general o
In this study, we present a general framework of outer approximation algorithms to solve convex vector optimization problems, in which the Pascoletti-Serafini (PS) scalarization is solved iteratively. This scalarization finds the minimum distance fro
In this paper we present a new algorithmic realization of a projection-based scheme for general convex constrained optimization problem. The general idea is to transform the original optimization problem to a sequence of feasibility problems by itera
This paper considers a general convex constrained problem setting where functions are not assumed to be differentiable nor Lipschitz continuous. Our motivation is in finding a simple first-order method for solving a wide range of convex optimization