ترغب بنشر مسار تعليمي؟ اضغط هنا

The Very Low Albedo of WASP-12b From Spectral Eclipse Observations with $textit{Hubble}$

94   0   0.0 ( 0 )
 نشر من قبل Taylor Bell
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an optical eclipse observation of the hot Jupiter WASP-12b using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. These spectra allow us to place an upper limit of $A_g < 0.064$ (97.5% confidence level) on the planets white light geometric albedo across 290--570 nm. Using six wavelength bins across the same wavelength range also produces stringent limits on the geometric albedo for all bins. However, our uncertainties in eclipse depth are $sim$40% greater than the Poisson limit and may be limited by the intrinsic variability of the Sun-like host star --- the solar luminosity is known to vary at the $10^{-4}$ level on a timescale of minutes. We use our eclipse depth limits to test two previously suggested atmospheric models for this planet: Mie scattering from an aluminum-oxide haze or cloud-free Rayleigh scattering. Our stringent nondetection rules out both models and is consistent with thermal emission plus weak Rayleigh scattering from atomic hydrogen and helium. Our results are in stark contrast with those for the much cooler HD 189733b, the only other hot Jupiter with spectrally resolved reflected light observations; those data showed an increase in albedo with decreasing wavelength. The fact that the first two exoplanets with optical albedo spectra exhibit significant differences demonstrates the importance of spectrally resolved reflected light observations and highlights the great diversity among hot Jupiters.



قيم البحث

اقرأ أيضاً

The exoplanet WASP-12b is the prototype for the emerging class of ultra-hot, Jupiter-mass exoplanets. Past models have predicted---and near ultra-violet observations have shown---that this planet is losing mass. We present an analysis of two sets of 3.6 $mu$m and 4.5 $mu$m $textit{Spitzer}$ phase curve observations of the system which show clear evidence of infrared radiation from gas stripped from the planet, and the gas appears to be flowing directly toward or away from the host star. This accretion signature is only seen at 4.5 $mu$m, not at 3.6 $mu$m, which is indicative either of CO emission at the longer wavelength or blackbody emission from cool, $lesssim$ 600 K gas. It is unclear why WASP-12b is the only ultra-hot Jupiter to exhibit this mass loss signature, but perhaps WASP-12bs orbit is decaying as some have claimed, while the orbits of other exoplanets may be more stable; alternatively, the high energy irradiation from WASP-12A may be stronger than the other host stars. We also find evidence for phase offset variability at the level of $6.4sigma$ ($46.2^{circ}$) at 3.6 $mu$m.
WASP-12b is a transiting hot Jupiter on a 1.09-day orbit around a late-F star. Since the planets discovery in 2008, the time interval between transits has been decreasing by $29pm 2$ msec year$^{-1}$. This is a possible sign of orbital decay, althoug h the previously available data left open the possibility that the planets orbit is slightly eccentric and is undergoing apsidal precession. Here, we present new transit and occultation observations that provide more decisive evidence for orbital decay, which is favored over apsidal precession by a $Deltamathrm{BIC}$ of 22.3 or Bayes factor of 70,000. We also present new radial-velocity data that rule out the R{o}mer effect as the cause of the period change. This makes WASP-12 the first planetary system for which we can be confident that the orbit is decaying. The decay timescale for the orbit is $P/dot{P} = 3.25pm 0.23$ Myr. Interpreting the decay as the result of tidal dissipation, the modified stellar tidal quality factor is $Q_star = 1.8 times10^{5}$.
We present the characterization of two engineered diffusers mounted on the 2.5 meter Nordic Optical Telescope, located at Roque de Los Muchachos, Spain. To assess the reliability and the efficiency of the diffusers, we carried out several test observ ations of two photometric standard stars, along with observations of one primary transit observation of TrES-3b in the red (R-band), one of CoRoT-1b in the blue (B-band), and three secondary eclipses of WASP-12b in V-band. The achieved photometric precision is in all cases within the sub-millimagnitude level for exposures between 25 and 180 seconds. Along a detailed analysis of the functionality of the diffusers, we add a new transit depth measurement in the blue (B-band) to the already observed transmission spectrum of CoRoT-1b, disfavouring a Rayleigh slope. We also report variability of the eclipse depth of WASP-12b in the V-band. For the WASP-12b secondary eclipses, we observe a secondary-depth deviation of about 5-sigma, and a difference of 6-sigma and 2.5-sigma when compared to the values reported by other authors in similar wavelength range determined from Hubble Space Telescope data. We further speculate about the potential physical processes or causes responsible for this observed variability
Ultra-hot Jupiters with equilibrium temperature greater than 2000K are uniquely interesting targets as they provide us crucial insights into how atmospheres behave under extreme conditions. This class of giant planets receives intense radiation from their host star and usually has strongly irradiated and highly inflated atmospheres. At such high temperature, cloud formation is expected to be suppressed and thermal dissociation of water vapor could occur. We observed the ultra-hot Jupiter WASP-76b with 7 transits and 5 eclipses using the Hubble Space Telescope (HST) and $Spitzer$ for a comprehensive study of its atmospheric chemical and physical processes. We detect TiO and H$_2$O absorption in the optical and near-infrared transit spectrum. Additional absorption by a number of neutral and ionized heavy metals like Fe, Ni, Ti, and SiO help explain the short wavelength transit spectrum. The secondary eclipse spectrum shows muted water feature but a strong CO emission feature in Spitzers 4.5 $mu$m band indicating an inverted temperature pressure profile. We analyzed both the transit and emission spectrum with a combination of self-consistent PHOENIX models and retrieval models (ATMO $&$ PLATON). Both spectra are well fitted by the self-consistent PHOENIX forward atmosphere model in chemical and radiative equilibrium at solar metallicity, adding to the growing evidence that both TiO/VO and NUV heavy metals opacity are prominent NUV-optical opacity sources in the stratospheres of ultra-hot Jupiters.
198 - N. B. Cowan 2011
[Abridged] We report Warm Spitzer full-orbit phase observations of WASP-12b at 3.6 and 4.5 micron. We are able to measure the transit depths, eclipse depths, thermal and ellipsoidal phase variations at both wavelengths. The large amplitude phase vari ations, combined with the planets previously-measured day-side spectral energy distribution, is indicative of non-zero Bond albedo and very poor day-night heat redistribution. The transit depths in the mid-infrared indicate that the atmospheric opacity is greater at 3.6 than at 4.5 micron, in disagreement with model predictions, irrespective of C/O ratio. The secondary eclipse depths are consistent with previous studies. We do not detect ellipsoidal variations at 3.6 micron, but our parameter uncertainties -estimated via prayer-bead Monte Carlo- keep this non-detection consistent with model predictions. At 4.5 micron, on the other hand, we detect ellipsoidal variations that are much stronger than predicted. If interpreted as a geometric effect due to the planets elongated shape, these variations imply a 3:2 ratio for the planets longest:shortest axes and a relatively bright day-night terminator. If we instead presume that the 4.5 micron ellipsoidal variations are due to uncorrected systematic noise and we fix the amplitude of the variations to zero, the best fit 4.5 micron transit depth becomes commensurate with the 3.6 micron depth, within the uncertainties. The relative transit depths are then consistent with a Solar composition and short scale height at the terminator. Assuming zero ellipsoidal variations also yields a much deeper 4.5 micron eclipse depth, consistent with a Solar composition and modest temperature inversion. We suggest future observations that could distinguish between these two scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا