ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of b quark EW couplings at ILC

61   0   0.0 ( 0 )
 نشر من قبل Francois Richard
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes an analysis performed at 250 GeV centre of mass energy for the reaction e+e- -> bbbar with the International Linear Collider, ILC, assuming an integrated luminosity of 500 fb-1. This measurement requires determining the b quark charge, which can be optimally performed using the precise micro-vertex detector of the detector ILD and the charged kaon identification provided by the dE/dx information of its TPC. Given that the forward backward asymmetry is maximal for e-L (Left-handed electron polarisation), it has been necessary to develop a new method to correct for unavoidable angular migration due to b charge mis-measurements. This correction is based on the reconstructed events themselves without introducing external corrections which would induce large uncertainties. With polarized beams, one can separate the Z and photon vector and axial couplings to b quarks. The precision reached is at the few per mill level, and should allow to confirm/discard the deviation observed at LEP1 on the ZbRbR coupling. Model independent upper bounds on the tensor couplings, F2V and F2A, are derived using the shape of the angular distribution.

قيم البحث

اقرأ أيضاً

101 - Juan Fuster 2021
This note presents an analysis of the potential of future high-energy electron-positron colliders to measure the $b$-quark mass. We perform a full-simulation study of the measurement of the ratio of the three-jet rates in events with $bbar{b}(g)$ and $qbar{q}(g)$ production, $R_{3}^{bl}$, and assess the dominant uncertainties, including theory and experimental systematic uncertainties. We find that the ILC Higgs factory stage, with an integrated luminosity of 2 ab$^{-1}$ at $sqrt{s}=$ 250 GeV can measure the $b-$quark $bar{MS}$ mass at a scale of 250 GeV ($m_b(250~$GeV$)$) with a precision of 1 GeV. From this result we extrapolate the potential of the GigaZ run running at $sqrt{s}= m_Z$. We expect $m_b(m_Z)$ can be determined with an 0.12 GeV uncertainty, exceeding the precision of the LEP and SLD measurements by a factor $sim$3.
196 - Zhiqing Zhang 2015
The LHeC is a proposed upgrade of the LHC to study $ep/eA$ collisions in the TeV regime, by adding a 60 GeV electron beam through an energy recovery linac. In $ep$, high precision top and electroweak physics can be performed, such as measurements of anomalous top couplings, light quark couplings to the $Z$ boson and the energy dependence of the weak mixing angle $sin^2!theta_W$, for which simulation studies are presented.
In these proceedings a novel approach to deal with the beam-induced effects in luminosity measurement is presented. Based on the relativistic kinematics of the collision frame of the Bhabha process, the beam-beam related uncertainties can be reduced to the permille level independently of a precision with which the beam parameters are known. Specific event selection combined with the corrective methods we introduce, leads to the systematic uncertainty from the beam-induced effects to be at a few permille level in the peak region above the 80% of the nominal centre-of-mass energies at ILC.
More than twenty institutes join the FCAL Collaboration in study of design of the very forward region of a detector for ILC and CLIC. Of particular importance is an accurate luminosity measurement to the level of 10-3, a requirement driven by the pot ential for precision physics at a future linear collider. In this paper, the method for luminosity measurement, requirements on luminometer and its integration in the forward region are presented. The impact of several effects contributing to the systematic uncertainty of luminosity measurement is given.
In this paper we describe a method of luminosity measurement at the future linear collider ILC that estimates and corrects for the impact of the dominant sources of systematic uncertainty originating from the beam-induced effects and the background f rom physics processes. Based on the relativistic kinematics of the collision frame of the Bhabha process, the beam-beam related uncertainty is reduced to a permille independently of the precision with which the beam parameters are known. With the specific event selection, different from the isolation cuts based on topology of the signal used at LEP, combined with the corrective methods we introduce, the overall systematic uncertainty in the peak region above 80% of the nominal center-of-mass energy meets the physics requirements to be at the few permille level at all ILC energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا