ترغب بنشر مسار تعليمي؟ اضغط هنا

Photometric redshifts for the Kilo-Degree Survey. Machine-learning analysis with artificial neural networks

107   0   0.0 ( 0 )
 نشر من قبل Maciej Bilicki
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a machine-learning photometric redshift analysis of the Kilo-Degree Survey Data Release 3, using two neural-network based techniques: ANNz2 and MLPQNA. Despite limited coverage of spectroscopic training sets, these ML codes provide photo-zs of quality comparable to, if not better than, those from the BPZ code, at least up to zphot<0.9 and r<23.5. At the bright end of r<20, where very complete spectroscopic data overlapping with KiDS are available, the performance of the ML photo-zs clearly surpasses that of BPZ, currently the primary photo-z method for KiDS. Using the Galaxy And Mass Assembly (GAMA) spectroscopic survey as calibration, we furthermore study how photo-zs improve for bright sources when photometric parameters additional to magnitudes are included in the photo-z derivation, as well as when VIKING and WISE infrared bands are added. While the fiducial four-band ugri setup gives a photo-z bias $delta z=-2e-4$ and scatter $sigma_z<0.022$ at mean z = 0.23, combining magnitudes, colours, and galaxy sizes reduces the scatter by ~7% and the bias by an order of magnitude. Once the ugri and IR magnitudes are joined into 12-band photometry spanning up to 12 $mu$, the scatter decreases by more than 10% over the fiducial case. Finally, using the 12 bands together with optical colours and linear sizes gives $delta z<4e-5$ and $sigma_z<0.019$. This paper also serves as a reference for two public photo-z catalogues accompanying KiDS DR3, both obtained using the ANNz2 code. The first one, of general purpose, includes all the 39 million KiDS sources with four-band ugri measurements in DR3. The second dataset, optimized for low-redshift studies such as galaxy-galaxy lensing, is limited to r<20, and provides photo-zs of much better quality than in the full-depth case thanks to incorporating optical magnitudes, colours, and sizes in the GAMA-calibrated photo-z derivation.



قيم البحث

اقرأ أيضاً

The Kilo-Degree Survey (KiDS) is an optical wide-field imaging survey carried out with the VLT Survey Telescope and the OmegaCAM camera. KiDS will image 1500 square degrees in four filters (ugri), and together with its near-infrared counterpart VIKIN G will produce deep photometry in nine bands. Designed for weak lensing shape and photometric redshift measurements, the core science driver of the survey is mapping the large-scale matter distribution in the Universe back to a redshift of ~0.5. Secondary science cases are manifold, covering topics such as galaxy evolution, Milky Way structure, and the detection of high-redshift clusters and quasars. KiDS is an ESO Public Survey and dedicated to serving the astronomical community with high-quality data products derived from the survey data, as well as with calibration data. Public data releases will be made on a yearly basis, the first two of which are presented here. For a total of 148 survey tiles (~160 sq.deg.) astrometrically and photometrically calibrated, coadded ugri images have been released, accompanied by weight maps, masks, source lists, and a multi-band source catalog. A dedicated pipeline and data management system based on the Astro-WISE software system, combined with newly developed masking and source classification software, is used for the data production of the data products described here. The achieved data quality and early science projects based on the data products in the first two data releases are reviewed in order to validate the survey data. Early scientific results include the detection of nine high-z QSOs, fifteen candidate strong gravitational lenses, high-quality photometric redshifts and galaxy structural parameters for hundreds of thousands of galaxies. (Abridged)
We present a bright galaxy sample with accurate and precise photometric redshifts (photo-zs), selected using $ugriZYJHK_mathrm{s}$ photometry from the Kilo-Degree Survey (KiDS) Data Release 4 (DR4). The highly pure and complete dataset is flux-limite d at $r<20$ mag, covers $sim1000$ deg$^2$, and contains about 1 million galaxies after artifact masking. We exploit the overlap with Galaxy And Mass Assembly (GAMA) spectroscopy as calibration to determine photo-zs with the supervised machine learning neural network algorithm implemented in the ANNz2 software. The photo-zs have mean error of $|langle delta z rangle| sim 5 times 10^{-4}$ and low scatter (scaled mean absolute deviation of $sim 0.018(1+z)$), both practically independent of the $r$-band magnitude and photo-z at $0.05 < z_mathrm{phot} < 0.5$. Combined with the 9-band photometry, these allow us to estimate robust absolute magnitudes and stellar masses for the full sample. As a demonstration of the usefulness of these data we split the dataset into red and blue galaxies, use them as lenses and measure the weak gravitational lensing signal around them for five stellar mass bins. We fit a halo model to these high-precision measurements to constrain the stellar-mass--halo-mass relations for blue and red galaxies. We find that for high stellar mass ($M_star>5times 10^{11} M_odot$), the red galaxies occupy dark matter halos that are much more massive than those occupied by blue galaxies with the same stellar mass. The data presented here are publicly released via the KiDS webpage at http://kids.strw.leidenuniv.nl/DR4/brightsample.php.
We present a catalog of quasars and corresponding redshifts in the Kilo-Degree Survey (KiDS) Data Release 4. We trained machine learning (ML) models, using optical ugri and near-infrared ZYJHK_s bands, on objects known from Sloan Digital Sky Survey ( SDSS) spectroscopy. We define inference subsets from the 45 million objects of the KiDS photometric data limited to 9-band detections. We show that projections of the high-dimensional feature space can be successfully used to investigate the estimations. The model creation employs two test subsets: randomly selected and the faintest objects, which allows to fit the bias versus variance trade-off. We tested three ML models: random forest (RF), XGBoost (XGB), and artificial neural network (ANN). We find that XGB is the most robust model for classification, while ANN performs the best for combined classification and redshift. The inference results are tested using number counts, Gaia parallaxes, and other quasar catalogs. Based on these tests, we derived the minimum classification probability which provides the best purity versus completeness trade-off: p(QSO_cand) > 0.9 for r < 22 and p(QSO_cand) > 0.98 for 22 < r < 23.5. We find 158,000 quasar candidates in the safe inference subset (r < 22) and an additional 185,000 candidates in the reliable extrapolation regime (22 < r < 23.5). Test-data purity equals 97% and completeness is 94%; the latter drops by 3% in the extrapolation to data fainter by one magnitude than the training set. The photometric redshifts were modeled with Gaussian uncertainties. The redshift error (mean and scatter) equals 0.01 +/- 0.1 in the safe subset and -0.0004 +/- 0.2 in the extrapolation, in a redshift range of 0.14 < z < 3.63. Our success of the extrapolation challenges the way that models are optimized and applied at the faint data end. The catalog is ready for cosmology and active galactic nucleus (AGN) studies.
The scientific value of the next generation of large continuum surveys would be greatly increased if the redshifts of the newly detected sources could be rapidly and reliably estimated. Given the observational expense of obtaining spectroscopic redsh ifts for the large number of new detections expected, there has been substantial recent work on using machine learning techniques to obtain photometric redshifts. Here we compare the accuracy of the predicted photometric redshifts obtained from Deep Learning(DL) with the k-Nearest Neighbour (kNN) and the Decision Tree Regression (DTR) algorithms. We find using a combination of near-infrared, visible and ultraviolet magnitudes, trained upon a sample of SDSS QSOs, that the kNN and DL algorithms produce the best self-validation result with a standard deviation of {sigma} = 0.24. Testing on various sub-samples, we find that the DL algorithm generally has lower values of {sigma}, in addition to exhibiting a better performance in other measures. Our DL method, which uses an easy to implement off-the-shelf algorithm with no filtering nor removal of outliers, performs similarly to other, more complex, algorithms, resulting in an accuracy of {Delta}z < 0.1$ up to z ~ 2.5. Applying the DL algorithm trained on our 70,000 strong sample to other independent (radio-selected) datasets, we find {sigma} < 0.36 over a wide range of radio flux densities. This indicates much potential in using this method to determine photometric redshifts of quasars detected with the Square Kilometre Array.
The Kilo Degree Survey (KiDS) is a 1500 square degree optical imaging survey with the recently commissioned OmegaCAM wide-field imager on the VLT Survey Telescope (VST). A suite of data products will be delivered to the European Southern Observatory (ESO) and the community by the KiDS survey team. Spread over Europe, the KiDS team uses Astro-WISE to collaborate efficiently and pool hardware resources. In Astro-WISE the team shares, calibrates and archives all survey data. The data-centric architectural design realizes a dynamic live archive in which new KiDS survey products of improved quality can be shared with the team and eventually the full astronomical community in a flexible and controllable manner.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا