ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear and nonlinear spectroscopy from quantum master equations

45   0   0.0 ( 0 )
 نشر من قبل Timothy Berkelbach
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the accuracy of the second-order time-convolutionless (TCL2) quantum master equation for the calculation of linear and nonlinear spectroscopies of multichromophore systems. We show that, even for systems with non-adiabatic coupling, the TCL2 master equation predicts linear absorption spectra that are accurate over an extremely broad range of parameters and well beyond what would be expected based on the perturbative nature of the approach; non-equilibrium population dynamics calculated with TCL2 for identical parameters are significantly less accurate. For third-order (two-dimensional) spectroscopy, the importance of population dynamics and the violation of the so-called quantum regression theorem degrade the accuracy of TCL2 dynamics. To correct these failures, we combine the TCL2 approach with a classical ensemble sampling of slow microscopic bath degrees of freedom, leading to an efficient hybrid quantum-classical scheme that displays excellent accuracy over a wide range of parameters. In the spectroscopic setting, the success of such a hybrid scheme can be understood through its separate treatment of homogeneous and inhomogeneous broadening. Importantly, the presented approach has the computational scaling of TCL2, with the modest addition of an embarrassingly parallel prefactor associated with ensemble sampling. The presented approach can be understood as a generalized inhomogeneous cumulant expansion technique, capable of treating multilevel systems with non-adiabatic dynamics.

قيم البحث

اقرأ أيضاً

More and more works deal with statistical systems far from equilibrium, dominated by unidirectional stochastic processes augmented by rare resets. We analyze the construction of the entropic distance measure appropriate for such dynamics. We demonstr ate that a power-like nonlinearity in the state probability in the master equation naturally leads to the Tsallis (Havrda-Charvat, Aczel-Daroczy) q-entropy formula in the context of seeking for the maximal entropy state at stationarity. A few possible applications of a certain simple and linear master equation to phenomena studied in statistical physics are listed at the end.
In computer simulations, quantum delocalization of atomic nuclei can be modeled making use of the Path Integral (PI) formulation of quantum statistical mechanics. This approach, however, comes with a large computational cost. By restricting the PI mo deling to a small region of space, this cost can be significantly reduced. In the present work we derive a Hamiltonian formulation for a bottom-up, theoretically solid simulation protocol that allows molecules to change their resolution from quantum-mechanical to classical and vice versa on the fly, while freely diffusing across the system. This approach renders possible simulations of quantum systems at constant chemical potential. The validity of the proposed scheme is demonstrated by means of simulations of low temperature parahydrogen. Potential future applications include simulations of biomolecules, membranes, and interfaces.
Systems operating out of equilibrium exchange energy and matter with the environment, thus producing entropy in their surroundings. Since the entropy production depends on the current flowing throughout the system, its quantification is affected by t he level of coarse-graining we adopt. In particular, it has been shown that the description of a system via a Fokker-Planck equation (FPE) lead to an underestimation of the entropy production with respect to the corresponding one in terms of microscopic transition rates. Moreover, such a correction can be derived exactly. Here we review this derivation, generalizing it when different prescriptions to derive the FPE from a Langevin equation are adopted. Then, some open problems about Gaussian transition rates and underdamped limit are discussed. In the second part of the manuscript we present a new approach to dealing with the discrepancy in entropy production due to the coarse graining by introducing enough microscopic variables to correctly estimate the entropy production within the FPE description. We show that any discrete state system can be described by making explicit the contribution of each microscopic current.
Path integral-based simulation methodologies play a crucial role for the investigation of nuclear quantum effects by means of computer simulations. However, these techniques are significantly more demanding than corresponding classical simulations. T o reduce this numerical effort, we recently proposed a method, based on a rigorous Hamiltonian formulation, which restricts the quantum modeling to a small but relevant spatial region within a larger reservoir where particles are treated classically. In this work, we extend this idea and show how it can be implemented along with state-of-the-art path integral simulation techniques, such as ring polymer and centroid molecular dynamics, which allow the approximate calculation of both quantum statistical and quantum dynamical properties. To this end, we derive a new integration algorithm which also makes use of multiple time-stepping. The scheme is validated via adaptive classical--path-integral simulations of liquid water. Potential applications of the proposed multiresolution method are diverse and include efficient quantum simulations of interfaces as well as complex biomolecular systems such as membranes and proteins.
Understanding system-bath correlations in open quantum systems is essential for various quantum information and technology applications. Derivations of most master equations (MEs) for the dynamics of open systems require approximations that mask depe ndence of the system dynamics on correlations, since the MEs focus on reduced system dynamics. Here we demonstrate that the most common MEs indeed contain hidden information about explicit system-environment correlation. We unfold these correlations by recasting the MEs into a universal form in which the system-bath correlation operator appears. The equations include the Lindblad, Redfield, second-order time-convolutionless, second-order Nakajima-Zwanzig, and second-order universal Lindblad-like cases. We further illustrate our results in an example, which implies that the second-order universal Lindblad-like equation captures correlation more accurately than other standard techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا