ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunneling decay of false vortices with gravitation

71   0   0.0 ( 0 )
 نشر من قبل Wonwoo Lee
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of vortices on the tunneling decay of a symmetry-breaking false vacuum in three spacetime dimensions with gravity. The scenario considered is one in which the initial state, rather than being the homogeneous false vacuum, contains false vortices. The question addressed is whether, and, if so, under which circumstances, the presence of vortices has a significant catalyzing effect on vacuum decay. After studying the existence and properties of vortices, we study their decay rate through quantum tunneling using a variety of techniques. In particular, for so-called thin-wall vortices we devise a one-parameter family of configurations allowing a quantum-mechanical calculation of tunneling. Also for thin-wall vortices, we employ the Israel junction conditions between the interior and exterior spacetimes. Matching these two spacetimes reveals a decay channel which results in an unstable, expanding vortex. We find that the tunneling exponent for vortices, which is the dominant factor in the decay rate, is half that for Coleman-de Luccia bubbles. This implies that vortices are short-lived, making them cosmologically significant even for low vortex densities. In the limit of the vanishing gravitational constant we smoothly recover our earlier results for the decay of the false vortex in a model without gravity.

قيم البحث

اقرأ أيضاً

We study the decay of false domain walls, which are metastable states of the quantum theory where the true vacuum is trapped inside the wall, with the false vacuum outside. We consider a theory with two scalar fields, a shepherd field and a field of sheep. The shepherd field serves to herd the solitons of the sheep field so that they are nicely bunched together. However, quantum tunnelling of the shepherd field releases the sheep to spread out uncontrollably. We show how to calculate the tunnelling amplitude for such a disintegration.
We study the dynamics of false vacuum bubbles. A nonminimally coupled scalar field gives rise to the effect of negative tension. The mass of a false vacuum bubble from outside observers point of view can be positive, zero, or negative. The interior f alse vacuum has de Sitter geometry, while the exterior true vacuum background can have geometry depending on the vacuum energy. We show that there exist expanding false vacuum bubbles without the initial singularity in the past.
We explore holographic entanglement entropy for Minkowski spacetime in three and four dimensions. Under some general assumptions on the putative holographic dual, the entanglement entropy associated to a special class of subregions can be computed us ing an analog of the Ryu-Takayanagi formula. We refine the existing prescription in three dimensions and propose a generalization to four dimensions. Under reasonable assumptions on the holographic stress tensor, we show that the first law of entanglement is equivalent to the gravitational equations of motion in the bulk, linearized around Minkowski spacetime.
There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativisitic sy mmetries which supports massive matter fields. In particular, one can not impose a priori restrictions on the geometric data if one wants to analyze matter response to a perturbed geometry. In this paper we construct such a Bargmann spacetime in complete generality without any prior restrictions on the fields specifying the geometry. The resulting spacetime structure includes the familiar Newton-Cartan structure with an additional gauge field which couples to mass. We illustrate the matter coupling with a few examples. The general spacetime we construct also includes as a special case the covariant description of Newtonian gravity, which has been thoroughly investigated in previous works. We also show how our Bargmann spacetimes arise from a suitable non-relativistic limit of Lorentzian spacetimes. In a companion paper [arXiv:1503.02680] we use this Bargmann spacetime structure to investigate the details of matter couplings, including the Noether-Ward identities, and transport phenomena and thermodynamics of non-relativistic fluids.
We consider the Skyrme model modified by the addition of mass terms which explicitly break chiral symmetry and pick out a specific point on the models target space as the unique true vacuum. However, they also allow the possibility of false vacua, lo cal minima of the potential energy. These false vacuum configurations admit metastable skyrmions, which we call false skyrmions. False skyrmions can decay due to quantum tunnelling, consequently causing the decay of the false vacuum. We compute the rate of decay of the false vacuum due to the existence of false skyrmions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا