ﻻ يوجد ملخص باللغة العربية
Over the past years, transition metal dichalcogenides (TMDs) have attracted attention as potential building blocks for various electronic applications due to their atomically thin nature. An exciting development is the recent success in engineering crystal phases of TMD compounds during the growth due to their polymorphic character. Here, we report an electric field induced reversible engineered phase transition in vertical 2H-MoTe2 devices, a crucial experimental finding that enables electrical phase switching for these ultra-thin layered materials. Scanning tunneling microscopy (STM) was utilized to analyze the TMD crystalline structure after applying an electric field, and scanning tunneling spectroscopy (STS) was employed to map a semiconductor-to-metal phase transition on the nanoscale. In addition, direct confirmation of a phase transition from 2H semiconductor to a distorted 2H metallic phase was obtained by scanning transmission electron microscopy (STEM). MoTe2 and Mo1-xWxTe2 alloy based vertical resistive random access memory (RRAM) cells were fabricated to demonstrate clear reproducible and controlled switching with programming voltages that are tunable by the layer thickness and that show a distinctly different trend for the binary compound if compared to the ternary materials.
In recent years, the field of antiferromagnetic spintronics has been substantially advanced. Electric-field control is a promising approach to achieving ultra-low power spintronic devices via suppressing Joule heating. In this article, cutting-edge r
Moderate amount of bending strains, ~3% are enough to induce the semiconductor-metal transition in Si nanowires of ~4nm diameter. The influence of bending on silicon nanowires of 1 nm to 4.3 nm diameter is investigated using molecular dynamics and qu
The spin field effect transistor envisioned by Datta and Das opens a gateway to spin information processing. Although the coherent manipulation of electron spins in semiconductors is now possible, the realization of a functional spin field effect tra
Recently, the intrinsic magnetic topological insulator MnBi2Te4 has attracted enormous research interest due to the great success in realizing exotic topological quantum states, such as the quantum anomalous Hall effect (QAHE), axion insulator state,
We report experimental evidence of excitonic spin-splitting, in addition to the conventional Zeeman effect, produced by a combination of the Rashba spin-orbit interaction, Stark shift and charge screening. The electric-field-induced modulation of the