ﻻ يوجد ملخص باللغة العربية
We study for the first time the dynamical properties and the growth index of linear matter perturbations of the Finsler-Randers (FR) cosmological model, for which we consider that the cosmic fluid contains matter, radiation and a scalar field. Initially, for various FR scenarios we implement a critical point analysis and we find solutions which provide cosmic acceleration and under certain circumstances we can have de-Sitter points as stable late-time attractors. Then we derive the growth index of matter fluctuations in various Finsler-Randers cosmologies. Considering cold dark matter and neglecting the scalar field component from the perturbation analysis we find that the asymptotic value of the growth index is $gamma_{infty}^{(FR)}approxfrac {9}{16}$, which is close to that of the concordance $Lambda$ cosmology, $gamma^{(Lambda)} approxfrac{6}{11}$. In this context, we show that the current FR model provides the same Hubble expansion with that of Dvali, Gabadadze and Porrati (DGP) gravity model. However, the two models can be distinguished at the perturbation level since the growth index of FR model is $sim18.2%$ lower than that of the DPG gravity $gamma^{(DGP)} approx frac{11}{16}$. If we allow pressure in the matter fluid then we obtain $gamma_{infty}^{(FR)}approxfrac{9(1+w_{m})(1+2w_{m})}{2[8+3w_{m}% (5+3w_{m})]}$, where $w_{m}$ is the matter equation of state parameter. Finally, we extend the growth index analysis by using the scalar field and we find that the evolution of the growth index in FR cosmologies is affected by the presence of scalar field.
In the context of Finsler-Randers theory we consider, for a first time, the cosmological scenario of the varying vacuum. In particular, we assume the existence of a cosmological fluid source described by an ideal fluid and the varying vacuum terms. W
An old question surrounding bouncing models concerns their stability under vector perturbations. Considering perfect fluids or scalar fields, vector perturbations evolve kinematically as $a^{-2}$, where $a$ is the scale factor. Consequently, a defini
We perform a phase space analysis of a generalized modified gravity theory with nonminimally coupling between geometry and matter. We apply the dynamical system approach to this generalized model and find that in the cosmological context, different c
The exploration of teleparallel gravity has been done from a dynamical systems point of view in order to be tested against the cosmological evolution currently observed. So far, the proposed autonomous systems have been restrictive over a constant dy
The $f(T,T_G)$ class of gravitational modification, based on the quadratic torsion scalar $T$, as well as on the new quartic torsion scalar $T_G$ which is the teleparallel equivalent of the Gauss-Bonnet term, is a novel theory, different from both $f