ﻻ يوجد ملخص باللغة العربية
We present a comprehensive review of the nodal domains and lines of quantum billiards, emphasizing a quantitative comparison of theoretical findings to experiments. The nodal statistics are shown to distinguish not only between regular and chaotic classical dynamics but also between different geometric shapes of the billiard system itself. We discuss, in particular, how a random superposition of plane waves can model chaotic eigenfunctions and highlight the connections of the complex morphology of the nodal lines thereof to percolation theory and Schramm-Loewner evolution. Various approaches to counting the nodal domains---using trace formulae, graph theory, and difference equations---are also illustrated with examples. The nodal patterns addressed pertain to waves on vibrating plates and membranes, acoustic and electromagnetic modes, wavefunctions of a particle in a box as well as to percolating clusters, and domains in ferromagnets, thus underlining the diversity---and far-reaching implications---of the problem.
A crucial result in quantum chaos, which has been established for a long time, is that the spectral properties of classically integrable systems generically are described by Poisson statistics whereas those of time-reversal symmetric, classically cha
It has been suggested that the distribution of the suitably normalized number of zeros of Laplacian eigenfunctions contains information about the geometry of the underlying domain. We study this distribution (more precisely, the distribution of the n
We present some numerical results for nonlinear quantum walks (NLQWs) studied by the authors analytically cite{MSSSS18DCDS, MSSSS18QIP}. It was shown that if the nonlinearity is weak, then the long time behavior of NLQWs are approximated by linear qu
We discuss several geometric conditions guaranteeing the finiteness or the infiniteness of the discrete spectrum for Robin Laplacians on conical domains.
We study the eigenvalues of the Laplacian with a strong attractive Robin boundary condition in curvilinear polygons. It was known from previous works that the asymptotics of several first eigenvalues is essentially determined by the corner openings,