ﻻ يوجد ملخص باللغة العربية
The photon emission from a non-equilibrium quark-gluon plasma (QGP) is analyzed. We derive an integral equation that describes photon production through quark-antiquark annihilation and quark bremsstrahlung. It includes coherence between different scattering sites, also known as the Landau-Pomeranchuk-Migdal effect. These leading-order processes are studied for the first time together in an out-of-equilibrium field theoretical treatment that enables the inclusion of viscous corrections to the calculation of electromagnetic emission rates. In the special case of an isotropic, viscous, plasma the integral equation only depends on three constants which capture the non-equilibrium nature of the medium.
In this article we investigate how the drag coefficient $A$ and $hat{q}$, the transverse momentum transfer by unit length, of charm quarks are modified if the QGP is not in complete thermal equilibrium using the dynamical quasi-particle model (DQPM)
Jets are a promising way to probe the non-equilibrium physics of quark-gluon plasma (QGP). We study how an out-of-equilibrium medium induces a jet particle to emit gluons. Evaluation of the emission rate is complicated by Weibel instabilities which l
Photons radiated in heavy-ion collisions are a penetrating probe, and as such can play an important role in the determination of the quark-gluon plasma (QGP) transport coefficients. In this work we calculate the bulk viscous correction to photon prod
We employ new field-theoretical tools to study photons and jets in a non-equilibrium quark-gluon plasma. Jet broadening and photon emission takes place through radiation which is suppressed by repeated and coherent interaction with the medium. We ana
Brief review of the hadronic probes that are used to diagnose the quark-gluon plasma produced in relativistic heavy ion collisions and interrogate its properties. Emphasis is placed on probes that have significantly impacted our understanding of the