ﻻ يوجد ملخص باللغة العربية
The generalized tight-binding model, being based on the spin-dependent sublattices, is developed to explore the magnetic quantization of monolayer bismuthene. The sp$^{3}$ orbital hybridizations, site energies, nearest and next-nearest hopping integrals, spin-orbital interactions and magnetic field (${B_{z}}$ ${hat{z}}$) are taken into account simultaneously. There exist three groups of low-lying Landau levels (LLs), in which they are mainly from the (6p$_{x}$,6p$_{y}$,6p$_{z}$) orbitals, and only the first group belongs to the unoccupied conduction states. Furthermore, each group is further split into the spin-up- and spin-down-dominated subgroups. The six subgroups present the rich and unique $B_{z}$-dependent LL energy spectra, covering the specific or arc-shaped $% B_{z}$-dependences, the normal/irregular spin-split energies, and the non-crossing/crossing/anti-crossing behaviors. Specially, the second group of valence LLs near the Fermi level can create the frequent inter-subgroup LL anti-crossings since the main and side modes are comparable. The main features of energy spectra can create the special structures in density of states.
A generalized tight-binding model, which is based on the subenvelope functions of the different sublattices, is developed to explore the novel magnetic quantization in monolayer gray tin. The effects due to the $sp^{3}$ bonding, the spin-orbital coup
Recently a new group of two dimensional (2D) materials, originating from the group V elements (pnictogens), has gained global attention owing to their outstanding properties.
The generalized tight-binding model, based on the subenvelope functions of distinct sublattices, is developed to investigate the magnetic quantization in sliding bilayer graphenes. The relative shift of two graphene layers induces a dramatic transfor
Europium nitride is semiconducting and contains non-magnetic 3+, but sub-stoichiometric EuN has Eu in a mix of 2+ and 3+ charge states. We show that at 2+ ~concentrations near 15-20% EuN is ferromagnetic with a Curie temperature as high as 120 K. The
This paper describes the open Novamag database that has been developed for the design of novel Rare-Earth free/lean permanent magnets. The database software technologies, its friendly graphical user interface, advanced search tools and available data