ﻻ يوجد ملخص باللغة العربية
The quantum theory of indirect measurements in physical systems is studied. The example of an indirect measurement of an observable represented by a self-adjoint operator $mathcal{N}$ with finite spectrum is analysed in detail. The Hamiltonian generating the time evolution of the system in the absence of direct measurements is assumed to be given by the sum of a term commuting with $mathcal{N}$ and a small perturbation not commuting with $mathcal{N}$. The system is subject to repeated direct (projective) measurements using a single instrument whose action on the state of the system commutes with $mathcal{N}$. If the Hamiltonian commutes with the observable $mathcal{N}$ (i.e., if the perturbation vanishes) the state of the system approaches an eigenstate of $mathcal{N}$, as the number of direct measurements tends to $infty$. If the perturbation term in the Hamiltonian does textit{not} commute with $mathcal{N}$ the system exhibits jumps between different eigenstates of $mathcal{N}$. We determine the rate of these jumps to leading order in the strength of the perturbation and show that if time is re-scaled appropriately a maximum likelihood estimate of $mathcal{N}$ approaches a Markovian jump process on the spectrum of $mathcal{N}$, as the strength of the perturbation tends to $0$.
In this article we describe the relation between the Chern-Simons gauge theory partition function and the partition function defined using the symplectic action functional as the Lagrangian. We show that the partition functions obtained using these t
In this paper a general definition of quantum conditional entropy for infinite-dimensional systems is given based on recent work of Holevo and Shirokov arXiv:1004.2495 devoted to quantum mutual and coherent informations in the infinite-dimensional ca
This paper presents the momentum map structures which emerge in the dynamics of mixed states. Both quantum and classical mechanics are shown to possess analogous momentum map pairs. In the quantum setting, the right leg of the pair identifies the Ber
The method, proposed in the given work, allows the application of well developed standard methods used in quantum mechanics for approximate solution of the systems of ordinary linear differential equations with periodical coefficients.
In this paper, we present a Hopf algebra description of a bosonic quantum model, using the elementary combinatorial elements of Bell and Stirling numbers. Our objective in doing this is as follows. Recent studies have revealed that perturbative quant