ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact coherent states with hairpin-like vortex structure in channel flow

76   0   0.0 ( 0 )
 نشر من قبل Michael D. Graham
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hairpin vortices are widely studied as an important structural aspect of wall turbulence. The present work describes, for the first time, nonlinear traveling wave solutions to the Navier--Stokes equations in the channel flow geometry -- exact coherent states (ECS) -- that display hairpin-like vortex structure. This solution family comes into existence at a saddle-node bifurcation at Reynolds number Re=666. At the bifurcation, the solution has a highly symmetric quasistreamwise vortex structure similar to that reported for previously studied ECS. With increasing distance from the bifurcation, however, both the upper and lower branch solutions develop a vortical structure characteristic of hairpins: a spanwise-oriented head near the channel centerplane where the mean shear vanishes connected to counter-rotating quasistreamwise legs that extend toward the channel wall. At Re=1800, the upper branch solution has mean and Reynolds shear-stress profiles that closely resemble those of turbulent mean profiles in the same domain.

قيم البحث

اقرأ أيضاً

We present a construction of isotropic boundary adapted wavelets, which are orthogonal and yield a multi-resolution analysis. We analyze direct numerical simulation data of turbulent channel flow computed at a friction Reynolds number of 395, and inv estigate the role of coherent vorticity. Thresholding of the vorticity wavelet coefficients allows to split the flow into two parts, coherent and incoherent vorticity. The coherent vorticity is reconstructed from their few intense wavelet coefficients. The statistics of the coherent part, i.e., energy and enstrophy spectra, are close to the statistics of the total flow, and moreover, the nonlinear energy budgets are very well preserved. The remaining incoherent part, represented by the large majority of the weak wavelet coefficients, corresponds to a structureless, i.e., noise-like, background flow whose energy is equidistributed.
A reduced description of shear flows consistent with the Reynolds number scaling of lower-branch exact coherent states in plane Couette flow [J. Wang et al., Phys. Rev. Lett. 98, 204501 (2007)] is constructed. Exact time-independent nonlinear solutio ns of the reduced equations corresponding to both lower and upper branch states are found for Waleffe flow [F. Waleffe, Phys. Fluids 9, 883--900 (1997)]. The lower branch solution is characterized by fluctuations that vary slowly along the critical layer while the upper branch solutions display a bimodal structure and are more strongly focused on the critical layer. The reduced model provides a rational framework for investigations of subcritical spatiotemporal patterns in parallel shear flows.
We investigate the role of intense vortical structures, similar to those in a turbulent flow, in enhancing collisions (and coalescences) which lead to the formation of large aggregates in particle-laden flows. By using a Burgers vortex model, we show , in particular, that vortex stretching significantly enhances sharp inhomogeneities in spatial particle densities, related to the rapid ejection of particles from intense vortices. Furthermore our work shows how such spatial clustering leads to an enhancement of collision rates and extreme statistics of collisional velocities. We also study the role of poly-disperse suspensions in this enhancement. Our work uncovers an important principle which, {if valid for realistic turbulent flows, may be a factor in} how small nuclei water droplets in warm clouds can aggregate to sizes large enough to trigger rain.
Exact coherent states of a linearly stable, plane parallel shear flow confined between stationary stress-free walls and driven by a sinusoidal body force (a flow first introduced by F. Waleffe, Phys. Fluids 9, 883 (1997)) are computed using equations obtained from a large Reynolds-number asymptotic reduction of the Navier-Stokes equations. The reduced equations employ a decomposition into streamwise-averaged (mean) and streamwise-varying (fluctuation) components and are characterized by an effective order one Reynolds number in the mean equations along with a formally higher-order diffusive regularization of the fluctuation equations. A robust numerical algorithm for computing exact coherent states is introduced. Numerical continuation of the lower branch states to lower Reynolds numbers reveals the presence of a saddle-node; the saddle-node allows access to upper branch states that, like the lower branch states, appear to be self-consistently described by the reduced equations. Both lower and upper branch states are characterized in detail.
122 - J. Kuhnen , B. Song , D. Scarselli 2017
Turbulence is the major cause of friction losses in transport processes and it is responsible for a drastic drag increase in flows over bounding surfaces. While much effort is invested into developing ways to control and reduce turbulence intensities , so far no methods exist to altogether eliminate turbulence if velocities are sufficiently large. We demonstrate for pipe flow that appropriate distortions to the velocity profile lead to a complete collapse of turbulence and subsequently friction losses are reduced by as much as 95%. Counterintuitively, the return to laminar motion is accomplished by initially increasing turbulence intensities or by transiently amplifying wall shear. The usual measures of turbulence levels, such as the Reynolds number (Re) or shear stresses, do not account for the subsequent relaminarization. Instead an amplification mechanism measuring the interaction between eddies and the mean shear is found to set a threshold below which turbulence is suppressed beyond recovery.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا