ﻻ يوجد ملخص باللغة العربية
In this paper our aim is to characterize the set of extreme points of the set of all n-dimensional copulas (n > 1). We have shown that a copula must induce a singular measure with respect to Lebesgue measure in order to be an extreme point in the set of n-dimensional copulas. We also have discovered some sufficient conditions for a copula to be an extreme copula. We have presented a construction of a small subset of n-dimensional extreme copulas such that any n-dimensional copula is a limit point of that subset with respect to weak convergence. The applications of such a theory are widespread, finding use in many facets of current mathematical research, such as distribution theory, survival analysis, reliability theory and optimization purposes. To illustrate the point further, examples of how such extremal representations can help in optimization have also been included.
For extreme value copulas with a known upper tail dependence coefficient we find pointwise upper and lower bounds, which are used to establish upper and lower bounds of the Spearman and Kendall correlation coefficients. We shown that in all cases the
We propose a new method for modeling the distribution function of high dimensional extreme value distributions. The Pickands dependence function models the relationship between the covariates in the tails, and we learn this function using a neural ne
The objective in stochastic filtering is to reconstruct information about an unobserved (random) process, called the signal process, given the current available observations of a certain noisy transformation of that process. Usually X and Y are mod
Since the pioneering work of Gerhard Gruss dating back to 1935, Grusss inequality and, more generally, Gruss-type bounds for covariances have fascinated researchers and found numerous applications in areas such as economics, insurance, reliability, a
We derive upper and lower bounds on the expectation of $f(mathbf{S})$ under dependence uncertainty, i.e. when the marginal distributions of the random vector $mathbf{S}=(S_1,dots,S_d)$ are known but their dependence structure is partially unknown. We