ترغب بنشر مسار تعليمي؟ اضغط هنا

Intelligent Disaster Response via Social Media Analysis - A Survey

273   0   0.0 ( 0 )
 نشر من قبل Tahora H. Nazer
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

The success of a disaster relief and response process is largely dependent on timely and accurate information regarding the status of the disaster, the surrounding environment, and the affected people. This information is primarily provided by first responders on-site and can be enhanced by the firsthand reports posted in real-time on social media. Many tools and methods have been developed to automate disaster relief by extracting, analyzing, and visualizing actionable information from social media. However, these methods are not well integrated in the relief and response processes and the relation between the two requires exposition for further advancement. In this survey, we review the new frontier of intelligent disaster relief and response using social media, show stages of disasters which are reflected on social media, establish a connection between proposed methods based on social media and relief efforts by first responders, and outline pressing challenges and future research directions.



قيم البحث

اقرأ أيضاً

Physical media (like surveillance cameras) and social media (like Instagram and Twitter) may both be useful in attaining on-the-ground information during an emergency or disaster situation. However, the intersection and reliability of both surveillan ce cameras and social media during a natural disaster are not fully understood. To address this gap, we tested whether social media is of utility when physical surveillance cameras went off-line during Hurricane Irma in 2017. Specifically, we collected and compared geo-tagged Instagram and Twitter posts in the state of Florida during times and in areas where public surveillance cameras went off-line. We report social media content and frequency and content to determine the utility for emergency managers or first responders during a natural disaster.
Multimedia content in social media platforms provides significant information during disaster events. The types of information shared include reports of injured or deceased people, infrastructure damage, and missing or found people, among others. Alt hough many studies have shown the usefulness of both text and image content for disaster response purposes, the research has been mostly focused on analyzing only the text modality in the past. In this paper, we propose to use both text and image modalities of social media data to learn a joint representation using state-of-the-art deep learning techniques. Specifically, we utilize convolutional neural networks to define a multimodal deep learning architecture with a modality-agnostic shared representation. Extensive experiments on real-world disaster datasets show that the proposed multimodal architecture yields better performance than models trained using a single modality (e.g., either text or image).
Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging wo rk in social neuroscience that leverages tools from network analysis has begun to pursue this issue, advancing knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individuals social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementation of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.
Risk and response communication of public agencies through social media played a significant role in the emergence and spread of novel Coronavirus (COVID-19) and such interactions were echoed in other information outlets. This study collected time-se nsitive online social media data and analyzed such communication patterns from public health (WHO, CDC), emergency (FEMA), and transportation (FDOT) agencies using data-driven methods. The scope of the work includes a detailed understanding of how agencies communicate risk information through social media during a pandemic and influence community response (i.e. timing of lockdown, timing of reopening) and disease outbreak indicators (i.e. number of confirmed cases, number of deaths). The data includes Twitter interactions from different agencies (2.15K tweets per agency on average) and crowdsourced data (i.e. Worldometer) on COVID-19 cases and deaths were observed between February 21, 2020 and June 06, 2020. Several machine learning techniques such as (i.e. topic mining and sentiment ratings over time) are applied here to identify the dynamics of emergent topics during this unprecedented time. Temporal infographics of the results captured the agency-levels variations over time in circulating information about the importance of face covering, home quarantine, social distancing and contact tracing. In addition, agencies showed differences in their discussions about community transmission, lack of personal protective equipment, testing and medical supplies, use of tobacco, vaccine, mental health issues, hospitalization, hurricane season, airports, construction work among others. Findings could support more efficient transfer of risk and response information as communities shift to new normal as well as in future pandemics.
Could social media data aid in disaster response and damage assessment? Countries face both an increasing frequency and intensity of natural disasters due to climate change. And during such events, citizens are turning to social media platforms for d isaster-related communication and information. Social media improves situational awareness, facilitates dissemination of emergency information, enables early warning systems, and helps coordinate relief efforts. Additionally, spatiotemporal distribution of disaster-related messages helps with real-time monitoring and assessment of the disaster itself. Here we present a multiscale analysis of Twitter activity before, during, and after Hurricane Sandy. We examine the online response of 50 metropolitan areas of the United States and find a strong relationship between proximity to Sandys path and hurricane-related social media activity. We show that real and perceived threats -- together with the physical disaster effects -- are directly observable through the intensity and composition of Twitters message stream. We demonstrate that per-capita Twitter activity strongly correlates with the per-capita economic damage inflicted by the hurricane. Our findings suggest that massive online social networks can be used for rapid assessment (nowcasting) of damage caused by a large-scale disaster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا